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Abstract. Datalog is a popular reasoning engine for use cases such as
static program analysis. However, the standard reasoning that Datalog
engines provide is insufficient to perform “AI” tasks such as code repair
and rule synthesis as typically found in Machine Learning based analyz-
ers. In this paper we discuss how Datalog engines can be leveraged to
perform similar tasks using logical reasoning.

Introduction

Datalog has become a popular language for implementing declarative program
analyses [2]. In this setup, the Datalog language acts as a concise domain-specific
language for specifying the semantics of static analysis with its subset lattice
domains. As a result, the Datalog engine becomes a piece of powerful fix-point
machinery that computes the least fix-point solution to the static program anal-
ysis problem. However, as static analyzers have evolved, the standard program
analysis workflow is insufficient for mass adoption in software engineering. A
static analysis tool is expected to provide additional intelligence beyond flagging
potentially erroneous code. For instance, engineers typically want to understand
why code has been flagged as potentially erroneous and how it can be fixed, and
they even expect analyzers to learn custom analyses from examples.

In recent work, we have explored techniques that leverage Datalog engines
such as Soufflé [1] to perform tasks such as provenance [7], input repair [4] and
rule synthesis [6]. In the static program analysis context, provenance allows users
to understand why the static program analyzer has flagged some code as erro-
neous. Input repair provides users with proposed fixes to their erroneous code,
and rule synthesis can suggest rectifying incorrect analyses or even generating
entirely new ones.

Given the popularity of employing black box Large Language Models (LLMs)
for such “AI” tasks, we believe this work presents an interesting alternative tech-
nique based on logical reasoning. Consequently, unlike LLMs, our techniques are
not subject to the hallucinations phenomena [3] and require low resource usage.
We finally discuss how Datalog-based program analysis, repair, and synthesis
can co-exist with LLM-based techniques.
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Program Provenance.

A static analyzer presents users with a list of alarms (potential bugs). The user
then has to triage these to determine if they are actionable. To aid triaging, an
explanation of why the analyzer believes the alarm to be true must be presented
to the user. For Datalog-based static analyzers, we have proposed using succinct
proof trees [7]. Since proof trees can be prohibitively large, the work in [7] used
proof annotations, i.e., information from the bottom-up evaluation, to compute
minimal proof trees (w.r.t. a given metric) in a top-down manner. Given a suc-
cinct proof tree, the user can understand the reasoning behind the alarm and
better understand where the reasoner may be wrong or have a certificate for the
bug found.

Program Repair.

Users can frequently find traces [5], proofs [7], etc., tedious to follow, especially
for large programs. It is easier for the user to triage the alarm by being given a
fix suggestion, i.e., a way to repair the code so the bug is no longer present. This
can be seen in human terms through a code review. A reviewer typically doesn’t
provide step by step reasoning for why they think there is a bug, instead they
typically suggest a new code fragment that will rectify the problem. Similarly,
the work in [4] annotates the inputs and rules with symbolic terms. Here Soufflé
performs a standard bottom-up fixpoint computation, which can be seen as a
type of symbolic execution. Then, using an SMT solver, we can find models that
remove the errors by removing, adding or changing the inputs.

Static Analysis Synthesis.

A major reason for the popularity of Datalog-based static analyzers is that they
allow users to encode domain-specific bugs. However, despite Datalog’s declar-
ative and high-level nature, this type of programming is prohibitive for some
users. Given a set of examples, such users could generate an analysis they could
use for similar bugs. To this end, the work in [6] uses Soufflé to synthesize Dat-
alog programs from input-output specifications. This approach leverages query
provenance [7] to scale the counterexample-guided inductive synthesis (CEGIS)
procedure for program synthesis. In each iteration of the procedure, a SAT solver
proposes a candidate Datalog program and a Datalog solver evaluates the pro-
posed program to determine whether it meets the desired specification – failure
to satisfy the specification results in additional constraints to the SAT solver.

Conclusion and Future Directions.

We have presented several techniques that combine reasoning techniques (e.g.,
Datalog, SMT) to perform tasks that are these days attributed to ML-based
reasoning (e.g., LLMs). In the context of static analysis, our reasoners over-
approximate. On the other-hand, they are sound and do not suffer from halluci-
nations. Many techniques require domain-specific knowledge (e.g., templates) to
improve precision. Similarly, LLMs also require prompts from users to improve
precision. An interesting line of work is investigating the combination of logical
reasoners with ML-based approaches.
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