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Abstract
Modern Datalog engines are employed in industrial applica-

tions such as graph-databases, networks, and static program

analysis. To cope with vast amount of data, Datalog engines

must employ parallel execution strategies, for which special-

ized concurrent data structures are of paramount importance.

In this paper, we introduce a specialized B-tree data struc-

ture for an open-source Datalog compiler written in C++.

Our data structure has been specialized for Datalog work-

loads running on shared-memory multi-core computers. It

features (1) an optimistic locking protocol for scalability, (2)

is highly tuned, and (3) uses the notion of “hints” to re-use

the results of previously performed tree traversals to exploit

data ordering properties exhibited by Datalog evaluation. In

parallel micro-benchmarks, the new data structure achieves

up to 59× higher performance than state-of-the-art industrial

standards, while integrated into a Datalog engine it accounts

for 3× higher, overall system performance.

CCS Concepts • Information systems → Data struc-
tures; • Software and its engineering → Constraint and
logic languages;

Keywords Optimistic Locking, B-Tree, Datalog Evaluation
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1 Introduction
In recent years, Datalog has gained increased popularity in

the implementation of advanced data analyses. Applications

vary from generic graph databases [50], network tools [18],

to static program [2, 10, 23, 45], security [35], and cloud com-

puting analysis [22, 28, 44]. In these applications, Datalog

is used as a domain specific language that expresses appli-

cation semantics naturally and concisely in a declarative

fashion. Applications expressed in a few lines of Datalog

may require several 100KLOCs in an imperative language,

and, hence, automatically deriving the implementation from

a Datalog specification is less error-prone and will greatly

reduce the time for implementation, testing, and debugging

of an application.

Datalog queries are defined on sets of relations – equiv-

alent to tables in conventional relational database systems.

However, not all data within the relations is provided explic-

itly. Deductive rules define how tuples in relations are formed

from the content of other relations. It is the task of a Datalog

engine to organize and evaluate the rules for computing the

tuples. State-of-the-art Datalog evaluation strategies, known

as semi-naïve evaluation strategies [1], reduce the evaluation

of deductive rules to a sequence of relational algebra opera-

tions, which require an internal representation for logical re-

lations. Thus, at the core of each Datalog engine[1, 28, 37, 52]

is a data structure for representing logical relations that facil-

itates join, selection, and projection operations. The range of

utilized data structures includes (in-memory) B-trees, tries,

ordinary arrays, and BDDs – all providing their advantages

and drawbacks. While several state-of-the-art engines have

shown promise by the use of data structures such as hash-

sets [25], B-trees [9], and OBDDs [52] to model relations,

they still do not facilitate parallel evaluation strategies.

Despite the vast body of Datalog evaluation research, Dat-

alog engines have been seen as sub-par when compared

to hand-crafted programs. For example, Reps (1995) [43] re-

ports that the Datalog implementation of an inter-procedural

data-flow analysis is 4-6 times slower than hand-crafted C

code. However, recently the Datalog engine Soufflé [28] has

demonstrated performance on a par with hand-crafted tools

https://doi.org/10.1145/3293883.3295719
https://doi.org/10.1145/3293883.3295719
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for complex rulesets and large datasets. Unlike classical Dat-

alog interpreters, Soufflé synthesizes a native parallel C++

program from a given Datalog specification. The generated

C++ program has data structures that are specialized for the

given deductive rules of a Datalog specification. This ap-

proach provides outstanding sequential performance. How-

ever, to utilize shared-memory multi-core machines, Soufflé

is in need of an efficient concurrent data structure that facil-

itates the parallel evaluation of deductive rules.

In this paper, we introduce a specialized concurrent data

structure for Datalog that is based on in-memory B-trees.

Our data structure is fundamental for the efficient parallel

execution of relational algebra operations on contemporary

shared-memory multicore machines. Our in-memory B-tree

implementation for Datalog enables Soufflé to evaluate very

large scale analysis problems including context-sensitive

points-to and network analysis for industrial-scale appli-

cations that were previously deemed too large for Datalog

engines to perform.

Contributions. We make the following contributions:

• We design a specialized concurrent data structure for

parallel semi-naïve evaluation that is based on in-mem-

ory B-trees supporting shared-memory multi-core ma-

chines.

• We present an optimistic fine-grained locking scheme

for our B-tree implementation. We introduce a new

optimistic read-write lock extending seqlocks [32] for
our implementation. Our new synchronization scheme

delivers high throughput in frequent write use-cases,

even on multi-socket architectures.

• We present a “hint” mechanism for our B-trees opera-

tions that exploit spatial and temporal locality in tree

accesses. By caching previous accesses, subsequent

tree traversals may be eliminated.

• We provide experimental evidence that our specialized

concurrent data structure based on in-memory B-trees

is scalable and performs well on shared-memory multi-

core machines.

2 Parallel Datalog Evaluation
Datalog specifications define input and output relations. The

input relations are given in the form of facts or input files.

The output relations are generated by logic rules. For ex-

ample, let edge be a binary input relation. The two logical

rules

path(X ,Y ) :- edge(X ,Y ). (1)

path(X ,Z ) :- path(X ,Y ), edge(Y ,Z ). (2)

implicitly define the content of the output relation path com-

puting the transitive closure of the edge relation. The first

rule includes all tuples of relation edge in relation path. The
second rule is a recursive rule and adds transitive paths in-

ductively, i.e., if there is (X ,Y ) ∈ path and (Y ,Z ) ∈ edge, then

1 us ing Tuple = array < s i z e _ t , 2 > ;

2 us ing R e l a t i o n = se t <Tuple > ;

3 R e l a t i o n e v a l u a t e ( c on s t R e l a t i o n &edge ) {

4 R e l a t i o n path = edge , d e l t a P a t h = edge ;

5 whi l e ( ! d e l t a P a t h . empty ( ) ) {

6 R e l a t i o n newPath ;

7 f o r ( c on s t au to &t 1 : d e l t a P a t h ) {

8 auto l = edge . lower_bound ( { t 1 [ 1 ] , 0 } ) ;

9 auto u = edge . upper_bound ( { t 1 [ 1 ] + 1 , 0 } ) ;

10 f o r ( au to i t = l ; i t != u ; ++ i t ) {

11 auto& t 2 = ∗ i t ;

12 Tuple t 3 ( { t 1 [ 0 ] , t 2 [ 1 ] } ) ;

13 i f ( pa th . f i n d ( t 3 ) == path . end ( ) )

14 newPath . i n s e r t ( t ) ;

15 }

16 }

17 path . i n s e r t ( newPath . beg in ( ) , newPath . end ( ) ) ;

18 d e l t a P a t h . swap ( newPath ) ;

19 }

20 r e t u r n path ;

21 }

Figure 1. Synthesised C++/STL code for Path Example

the pair (X ,Z ) will be in relation path. Real-world use-cases

may comprise hundreds of relations, connected through hun-

dreds of (potentially mutually recursive) rules.

Soufflé [28] compiles the transitive closure example to C++

code as listed in Figure 1. The code outlines the anatomy

of the underlying least fixed-point calculations of the semi-

naïve evaluation [1] using STL’s set data structures for re-

lations. The synthesized function evaluate() has the input
relation edge as an argument and computes the output rela-

tion path. The non-recursive rule (1) causes the initialization
of relation path with the tuples of relation edge. The fixed-
point calculation for the recursive rule (2) is performed in

the while-loop from line 5 to line 19. In each iteration of

the while-loop, new tuples are produced for relation path.
Thereby, the auxiliary relations newPath and deltaPath are

used to avoid re-computations of already generated tuples.

If no further tuples can be found, the fixed-point algorithm

will stop, and relation path will be the transitive closure of

edge.
The loop-nest in line 7-11 finds matching edges t2 ≡
(Y ,Z ) for each newly discovered path t1 ≡ (X ,Y ) in re-

lation deltaPath. The adjacent edges t2 can be found effi-

ciently because the STL set uses a lexicographical order

over the edge set. The lexicographical order for two edges

(u,v) and (u ′,v ′) is defined as (u,v) ≤ (u ′,v ′) if and only if

u < u ′ ∨ (u = u ′ ∧v ≤ v ′). If the node-set is totally ordered

(i.e., for each node there exists a unique number), then the

lexicographical order is a total order of the edge set. With

the lexicographical order, STL’s red-black tree efficiently

performs the range traversal of all matching/adjacent edges

and no scan over the whole relation edge is necessary. If a
matching edge pair is found, a new path edge t3 ≡ (X ,Z )
(cf. line 12) is constructed. If t3 is not yet known (line 13), it
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will be added to the set of newly discovered paths (line 14).

Finally, newly discovered entries are merged into the path

relation and promoted to be the deltaPath set for the next

iteration (line 17 and 18).

With the exception of the insert operation in line 14, all

operations within the nested for-loop between line 7 and line

16 are read-only operations or targeting non-shared memory

locations. Thus, the recursive rule can be made parallel (e.g.,

by merely parallelizing the outermost for-loop in line 7) by

providing a synchronized insert operation. However, STL’s

set implementation misses this opportunity due to the lack

of synchronisation.

Hence, a parallel Datalog evaluation requires a concurrent

set data structure providing an STL-like interface. Elements

in the set must be sorted so that range queries efficiently filter

tuples. For the Datalog evaluation, the following concurrent

operations are essential: insert(t) inserts a fixed sized n-ary

integer tuple t into a set of n-ary tuples; ignoring duplicates,

begin() and end() for container traversals, lower_bound(a)
and upper_bound(a) for range queries, find(t) for checking
the existence of tuple t , empty() for checking whether the

container is empty. Note that no deletion operation is re-

quired since relations in Datalog can only grow (and never

shrink).

TheDatalog’s rule evaluation has very specific use-patterns

of the underlying set data structure. These use patterns can

be optimized for better parallel performance. For example,

the usage of a set data structure has two phases (cf. [51]):

(1) either there are multiple writers but no readers, or (2)

there are multiple readers but no writers. For the example in

Figure 1, the nested loops in lines 7 and 10 read pairs from

relation deltaPath and edge but do not insert new pairs into

deltaPath/edge. Newly found pairs are inserted in relation

newPath but no read operations on newPath exist in this

loop nest. The semi-naïve evaluation guarantees this two

phases for all involved sets in its rule evaluation, i.e., there

are no interleaved reads and writes. Hence, read operations

do not need synchronization; only the write operation must

be synchronized. Furthermore, the tuples of the relations in

the body of a rule are traversed in a sorted fashion, since the

relations are sorted. Hence, newly found tuples are generated

in a sorted fashion as well. Hence, the set data structure can

exploit a tuple order for minimizing the search overheads in

the data structure.

3 A Specialized B-tree for Datalog
A data structure that is highly suitable for the sequential eval-

uation of Datalog programs is the B-tree data structure [6].

B-trees are balanced binary search trees with insertions and

searches in O(logn) worst-case execution time. They have

efficient traversals in O(n), and range queries in O(logn)+ r
where r is the size of the range. B-trees are memory efficient

using O(n) space. In high write-throughput situations, larger

bucket sizes provide sufficient capacity to fill the buckets

lazily, avoiding the reorganisation of the tree frequently. By

consecutively storing data in memory, B-tree implementa-

tions greatly benefit from modern memory architectures

using caches effectively.

However, current state-of-the-art implementations of B-

trees cannot cope well with a parallel Datalog evaluation

since their synchronisation mechanisms must have very lit-

tle overheads. In the case of Datalog, we observe that read

B-tree operations are always followed by several write-only

operations. Thus, unlike in a traditional setup, we have two

distinct phases for reading and writing. Another observation

in Datalog workloads is that data is highly sorted. As a re-

sult, the same tree traversals frequently reoccur, and can be

cached for future use.

In this section, we describe an in-memory B-tree data

structure for parallel Datalog workloads that has a new op-

timistic fine-grained locking scheme using optimistic read-
write locks. Our data structure has a high throughput in fre-

quent write use-cases (even on multi-socket architectures).

We introduce a “hint” mechanism for our B-trees operations

that exploit spatial and temporal locality in tree traversals

by caching them.

3.1 Synchronization
The parallel semi-naïve evaluation of Datalog guarantees two

phases (cf. [51]) in a relational data structure, i.e., in every

parallel context B-trees are either exclusively queried or

written – or neither. However, a relationwill never be queried

while being modified. Therefore, we need a synchronisation

mechanism for concurrent insertions only.

In the past, a large variety of locking schemes have been

introduced [21]. Approaches range from globally locking

the entire tree, over fine-grained mutex based locking, fine-

grained read/write lock based locking, to hardware transac-

tionalmemory based approaches [30]. Lock-based approaches

on NUMA [24] architectures, especially beyond the single-

socket boundary, suffer from the high bandwidth require-

ments due to frequent cache line invalidations when acquir-

ing and releasing locks. In particular, the lock protecting the

root node, which needs to be traversed for virtually every

single operation, introduces a performance penalty for all

operations.

Optimistic Read-Write Lock. A lock mechanism has been

devised for concurrent heavy read / seldom write use-cases

called seqlocks [32]. It represents an optimistic locking mech-

anism andwas initially discussed in database applications [38].

Seqlocks solve the problem of synchronizing reader/writer

threads that access shared data concurrently. A version num-

ber (aka. lease) is used to synchronise the access of the shared

data. Before reading the shared data, the reader thread first

records the version number and reads the shared data, which

is not validated yet. After reading the shared data, the reader
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Figure 2. Outline of optimistic locking scheme.

thread verifies that the version number is even and has not

changed. If the version number has changed or is odd, the

read thread restarts itself. Otherwise, the read shared data is

validated and can be consumed. When a writer thread begins

writing shared data, it will wait until it reads an even version

number and will increment the version number such that

the version number becomes an odd number. After modify-

ing the shared data the write thread increases the version

number again. Note that concurrent writer threads are syn-

chronized by observing an even number before writing.

For our B-Tree implementation we adapt seqlocks such

that the locking of nodes in the B-tree and the locking of the

root node reference become more efficient. Our new opti-
mistic read-write lock has read-potential-write threads only
(instead of having distinct read threads and write threads)

and combines the roles of reader and writer threads. A read-

potential-write thread reads the shared data and decides

after reading the shared data whether it wants to modify

the data. Thus, a read-potential-write thread may acquire

a read lock first, inspects the shared data, and decides after

the read whether a write to the shared data is necessary, and

upgrades to a write-lock. Combining the roles of a read and

writer thread provides better performance in our use-case,

since shared data is read first and only after the inspection

of the shared data, it may change to a write lock.

Figure 2 illustrates the state of our optimistic read/write-

locking scheme. Our optimistic read/write lock provides

eight operations: start_read, valid, end_read, try_upgrade_to
_write, end_write, abort_write, try_start _write, and start_write.
The start_read initiates a new read phase, returning a lease,
i.e., the version number. This lease can be used to test whether

concurrent updates occurred using the valid operator. The

lease is also required to end the read phase using the end_read
operation, or to attempt to enter a write phase through the

try_upgrade_to_write operation. The end_write operation is

used to mark the end of a write phase, and the abort_write
terminates a write phase when no modification took place.

Finally, the try_start_write operation attempts to directly

enter a write phase. All of those are non-blocking. The only

blocking operation is the start_write operation, which will

block until a write access is granted.

Optimistic B-tree Insertion. Algorithm 1 outlines our op-

timistic B-tree insertion procedure. Each node is equipped

with an optimistic read-write lock, and an additional root_lock

Algorithm 1 Optimistic B-tree insertion procedure.

1: procedure insert(tree,val)
2: // safely initialize root node pointer
3: while tree->root == null do
4: if !(try_start_write(tree->root_lock)) continue
5: if tree->root == null then
6: tree->root← < create new node >

7: end if
8: end_write(tree->root_lock)

9: end while
10:

11: restart:

12: // safely obtain root node and its lock
13: repeat
14: root_lease← start_read(tree->root_lock)

15: cur← tree->root

16: cur_lease← start_read(cur->lock)

17: until end_read(root_lease)
18:

19: // descent into the tree
20: while true do
21: // if value to be inserted is present => done
22: if contains(cur,val) and valid(cur_lease) return
23:

24: // process inner node
25: if cur->inner then
26: next← find_next(cur,val)

27: if !valid(cur_lease) goto restart

28: next_lease← start_read(next->lock)

29: if !valid(cur_lease) goto restart

30: cur← next

31: cur_lease← next_lease

32: continue
33: end if
34:

35: // request write access to located leaf node
36: if !try_upgrade_to_write(cur_lease) goto restart

37:

38: // make some space, if necessary
39: if full(cur) then
40: split(tree,cur)

41: end_write(cur_lock)

42: goto restart

43: end if
44:

45: // insert value into this leaf node
46: < insert value in current node >

47: end_write(cur_lock)

48: return
49: end while
50: end procedure

protects the root node pointer. The thread safe initial cre-

ation of a root node is covered by lines 2-9. Lines 11-49 insert

values in a non-empty tree. Lines 13-17 obtain a pointer to

the current root node, while lines 20-33 navigate down the

tree. Once a leaf node is reached, lines 35-47 inserts a new

value. In case the targeted leaf node is full, the node splitting

procedure outlined by Algorithm 2 is invoked. In this proce-

dure, write permissions to nodes are requested bottom-up

until a node that is not full – and thus does not need to be

split – or the tree’s root lock is reached (lines 2-23). After-

ward, node splitting is performed (line 26) and the locks are

released in reverse order (lines 28-35). Note that splitting

is performed such that half of the original keys are kept in

the existing node and the other half is moved to a newly

created node. Since our data-structure can only grow (i.e.

the evaluation does not require a delete operation), nodes in

memory are never deleted or replaced by other nodes.

In all those steps, the following rules are obeyed: The

values stored in a node as well as child node pointers are

protected by the corresponding node’s lock. However, the

parent pointer is covered by the parent’s lock or the tree’s
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Algorithm 2 Optimistic B-tree node splitting procedure.

1: procedure split(tree,node)
2: // write-lock path bottom-up
3: cur← node

4: parent← cur->parent

5: path← ϵ
6: while true do
7: if parent != null then
8: while true do
9: start_write(parent->lock)

10: if parent == cur->parent break
11: abort_write(parent->lock)

12: parent← cur->parent

13: end while
14: else
15: start_write(tree->root_lock)

16: end if
17: path← append(path,parent)

18:

19: // stop at root or non-full inner node
20: if parent == null or !full(parent) break
21: cur← parent

22: parent← cur->parent

23: end while
24:

25: // conduct actual split
26: < split node and propagate to parents >

27:

28: // unlock path top-down
29: for all parent in reverse(path) do
30: if parent != null then
31: end_write(parent->lock)

32: else
33: end_write(tree->root_lock)

34: end if
35: end for
36: end procedure

root lock, for the root node. Before reading any value, read

access through the corresponding lock is acquired and before

using the obtained information, the read phase is validated

(e.g. line 28 in Algorithm 1). Similarly, every modification is

enclosed by the handling of a correspondingwrite phase. The

detection of conflicts is handled by restarting the insertion

procedure.

The above locking scheme ensures that situations, where

data is concurrently read and written, will be discovered and

that write access is exclusive. However, since it is optimistic,

it does not prevent concurrent read and write access in the

first place. Thus, the code has to make sure that read data

is validated by checking the version number before using

it. This is in particular important for the utilization of child-

node pointers, where utilizing a corrupted pointer could lead

to segfaults.

Another complication is the requirement that the possi-

bility of updating a read permit on a node to a write permit

must only be ceded once it is ensured that the child node

visited next during the insert is not going to split and thereby

causing an update to the parent. This is a common require-

ment on all fine-grained locking schemes, and handled by

lines 26-30 in Algorithm 1.

The major benefit of the optimistic locking scheme is that

for the most frequent case of merely reading the state of

an inner node, no write operation – and thus no cache line

invalidation and no bus communication – is required. Neither

the version number nor the node content has to be modified.

For a conventional read/write lock at least the state of the

lock would have to be altered.

Optimistic B-tree Implementation. Although theoreti-

cally sound, providing a sound implementation of a seqlocks

using any programming language is difficult. At its core,

seqlocks constitute data races, for which most programming

languages do not provide any semantics. In particular, in

our case, C++’s semantic defines the behavior of programs

with data races as undefined. Consequently, implementations

require special care.

Boehm investigated the problem of realizing a sound im-

plementation of seqlocks using modern C++ and its associ-

ated memory model [7]. In his work, several ways to realize

sound seqlock implementations are discussed. Unfortunately,

each of those require not only the adaptation of the lock code

but also the wrapping of all data elements accesses within the

critical region inside of C++’s atomic wrapper type. Further-

more, to keep the resulting performance penalty low, explicit

memory order constraints need to be provided. Ultimately,

by carefully selecting memory orders and introducing fences,

this allows the compiler to omit code relying on the native

memory model of the target platform (e.g. x86), avoiding

explicit atomic operations, and thus overhead. For our im-

plementation, we adapted the solution presented by Boehm

based on the utilization of acquire fences. We perform syn-

chronization in the following steps: (1) read the version num-

ber with memory_order_acquire, (2) keys / pointers / ele-
ment counters are all read with memory_order_relaxed, (3)
before validating the version number we use memory_fence_
_acquire, and (4) followed by reading the version number

with memory_order_relaxed.

3.2 Operation Hints
The nested for loops (implementing a nested loop joins [1])

in the Datalog evaluation computation maintain an order

(lexicographical) on the data being searched or inserted into

a given relation. As a result, this process results in locating or

inserting data in close temporal proximity in a B-tree. Hence,

by storing previous tree traversals, the new operation may

be able to short cut the traversal and reuse the locality of a

previous operation.

For example, we have two consecutive insert operations

for the pair (7, 10) and (7, 4) that are close according to their

lexicographical order. When searching for the existence of

both pairs, the second insert operations most likely will try

to locate the same leaf node and the tree traversal of the

first insert operations can be utilized by checking whether

the leaf node of (7, 10) may possibly contain the pair (7, 4)
as well. If the pair (7, 4) is not contained by the leaf node,

a new tree traversal is initiated. This check has very little

computational overheads.
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To exploit the spatial and temporal locality of data items,

we introduce the hint mechanism, which stores pointers of re-

cently accessed leaf nodes. If the tuple to be inserted/queried

is within the range covered by a retained leaf node, the tree

traversal for finding the leaf node can be skipped. The hint

mechanism also minimizes the synchronisation overhead

caused by locking caused by the traversal. Note that since

tree nodes are never deleted nor moved, the hint pointers

never become a dangling reference/invalidate themselves.

Hints are maintained in thread local storage and passed on

as arguments in each invocation of an operation. Hence, the

hint mechanism has very little computational and memory

overheads for parallel B-trees. However, achieving compati-

bility with tree synchronization schemes remains challeng-

ing for operation hints. In principle, such schemes have two

options for safely acquiring sequences of locks to avoid dead-

lock: either a top-down or a bottom-up scheme. Both schemes

ensure non-cyclic dependencies between threads holding

locks, thereby ensuring deadlock free processing. Introduc-

ing hints for insertion operations may result in threads, upon

a successful reuse of a previous tree traversal, starting their

navigation through the B-tree at the leaf level and walk up-

wards in case nodes need to be split. Thus, a bottom-up policy

for acquiring node locks is required and simpler, top-down

based synchronization mechanisms are not compatible.

In our optimistic B-tree design, locks are also acquired top-

down (see Algorithm 1). However, in those steps merely read-

permissions are acquired. Thus, when entering the phase

of mutating the tree, actual exclusive write-permissions are

acquired bottom-up (see Algorithm 2). This can not lead to a

deadlock since read-permission acquirement is non-blocking

and threads owning those cannot prevent other threads from

acquiring write permissions. Thus, the deadlock relevant

type of permission is the write lock acquired bottom-up.

Consequently, our locking mechanism is compatible with

operation hints directly jumping to node leaves during in-

sertions, skipping the navigation through the tree.

Implementation wise, our B-tree provides a factory func-

tion for initial operation hints. Every thread may invoke this

function to obtain default hints, which can then be passed

to B-tree operations where they are gradually updated. All

four most frequently utilized operations, lookups, inserts,

lower- and upper-bound queries, are equipped with such

hints, tracing located nodes independently. For each of those,

the last accessed leaf-node is maintained as a hint for future

invocations.

Implementation Notes. Our C++ implementation includes

a number of tuning optimizations to specifically target im-

proved Datalog evaluation performance: (1) collapsing recur-

sive operations to iterative ones, (2) implementing a custom

3-way comparator for tuples, and (3) a specialized merge

operation which leverages the structure in one B-tree when

merged into another. These tuning optimizations target im-

plementation details and reduce the overall runtime of the

operations; they do not provide any new algorithmic insights.

The C++ implementation is an open-source implementation

used in the Soufflé Datalog engine [16], and is licensed under

the UPL V1.0 license. The data-structure is implemented as

a C++ template and can be found in the file BTree.h.

4 Experiment
In this section, we evaluate the performance of our spe-

cialized concurrent B-tree data structure using benchmarks.

Those benchmarks evaluate the execution time of the most

frequently utilized operators within the Soufflé Datalog en-

gine. Additionally, we evaluate the performance of our B-tree

running Soufflé on real-world Datalog programs.

Besides our B-tree implementation (denoted as btree or
optimistic btree), we include the following additional data

structures in our evaluation. For the sequential performance

we evaluate:

• C++’s std::set, denoted as STL rbtset, as an example

of a balanced tree based in-memory data structure

(red-black tree) satisfying all requirements stated for

Datalog relations

• C++’s hash based std::unordered_set, for clarity denoted
as STL hashset, providing theoretically superior inser-

tion and lookup performance of O(1), yet no efficient

support for range queries

• a state-of-the-art B-tree implementation provided by

Google [20], denoted as google btree, to evaluate the

quality of our optimistic B-tree implementation

• a sequential version of our B-tree, to evaluate the im-

pact of our locking scheme on the performance of op-

erators with and without operation hints respectively,

denoted as seq btree and seq btree (n/h)
For the evaluation of parallel operations we evaluate:

• the concurrent_unordered_set implementation of Intel’s

TBB library version 2017_U7 [42] denoted as TBB hash-
set, representing an industry standard, state-of-the-art

concurrent hash-based set implementation

• an implementation of our B-tree without operation

hints denoted as btree (n/h)
• a parallel reduction based set implementation where

insertions take place on thread private set instances,

before being merged in a parallel reduction step; the

implementation uses Google’s B-tree with OpenMP’s

user-defined reduction operation support; it is denoted

as reduction btree
Table 1 provides a summary of all data structures included

in our evaluation.

Most experiments presented in this section have been con-

ducted on a 4-socket Intel(R) Xeon(R) CPU E5-4650 system

(8 cores each, 32 total) equipped with 256GB memory using

GCC 5.4.0 with -O3 optimization. For these multi-threaded
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Table 1. Summary of investigated data structures.

thread

designation safe description

STL rbtset no C++ standard library’s set, implementing a red-

black tree

STL hashset no C++ standard library’s unordered set; a hash

based set

google btree no Google’s B-tree

TBB hashset yes Intel Threading Building Blocks’ concurrent un-

ordered set

seq btree no a sequential verions of our B-tree

seq btree (n/h) no our sequential B-tree without hints

reduction btree yes Google’s B-tree combined with bulk inserts

through parallel reduction

btree yes our optimistic B-tree

btree (n/h) yes our optimistic B-tree without hints

experiments, GCC’s OpenMP implementation is used as the

underlying parallel runtime system, threads are pinned to

cores, and sockets are filled before threads are assigned to

additional sockets. Single-threaded experiments have been

conducted on an Intel Xeon Gold 6130 system equipped with

192GB memory, using GCC 5.5.0 with -O3 optimization.

4.1 Sequential Performance
In the first step, we evaluate the execution time required

for the three most performance critical operations: inserts,

membership tests, and range queries.

For evaluating the performance of the insert operation,

we insert varying numbers of 2D points
1
into initially empty

sets, measure the overall execution time and compute the

achieved throughput in inserts/s. Thereby we distinguish

between an ordered and unordered use case. In the ordered,

the elements are inserted in their lexicographical order, in

the unordered, a random order is employed.

For the membership query benchmark, we insert the same

sets of elements into our candidate data structures, followed

by querying for each element once in order and in a random

sequence. The computation time of all queries is recorded

and the amortized query performance in queries/s obtained.

Finally, for the evaluation of the range query operation, we

are focusing on the cost of scanning (aka iterating) through

a range of elements, since the cost of locating the start of

a range is already covered by the membership test. Thus,

for this benchmark we are measuring the number of entries

visited per second while iterating once through the entire

set of elements within a relation. Note that hints are not

applicable to the iteration operation.

Figure 3 summarizes the collected performance data. The

first row illustrates the sequential insertion performance.

As can be observed, B-tree based implementations clearly

outperform alternative data structures in the ordered as well

as in the random insertion load case. This even holds up

against hash-based data structures, which exhibit theoreti-

cally superior asymptotic runtime complexity. However, the

cache-friendly organization of data within B-trees causes

1
2D data is the most relevant case in many Datalog queries; besides, results

remain similar for other dimensions

significantly less cache misses, and thus results in superior

performance compared to the random memory access pat-

tern inherent in hash-based data structures. Among B-trees

ordered insertions result in approximately 5× higher perfor-

mance than random insertions – in part due to improved

cache utilization and the reduced complexity of inserting

elements within leaves in order. Furthermore, for the ran-

dom order case, a larger number of elements in the sets

leads to weaker performance. While in both cases more in-

ner nodes need to be passed to reach insertion points, in the

random case those inner nodes are more likely to trigger

cache misses. Also, in both cases operation hints can not

amortize their maintenance costs and overhead caused by

the locking scheme can be observed (up to ∼ 25% in ordered,

and ∼ 15% in random).

Figure 3c and Figure 3d illustrate the observed query per-

formance for ordered and unordered sequences of accesses.

While all data structures provide roughly the same perfor-

mance, two outliers can be observed: for one, in the ordered

case, hints provide an up to 6× performance boost for mem-

bership tests to B-trees, since navigating the tree can almost

always be circumvented thanks to the hint. The second out-

lier is provided by STL’s unordered set providing high perfor-

mance for small datasets (e.g 2× faster than the TBB version).

This advantage vanishes with growing data set sizes.

Finally, Figure 3e and Figure 3f summarize the rate at

which elements stored in a data structure can be iterated

through. Here, the compact storage of data in B-trees also

facilitates efficient iterations. The filling order, however, has

an impact on the filling grade of leaf nodes, affecting the

overall efficiency. Higher filling rates, as caused by in-order

inserts, lead to a more compact tree, involving fewer nodes.

Since every node switch is a potential cache miss, this leads

to improved iteration speed. Finally, as can be observed, the

integration of synchronization techniques, and thus the nec-

essarywrapping of key elements into atomic types, is causing

a performance deficit for our optimistic B-tree compared to

its sequential equivalent.

Overall, the data underlines the superiority of B-tree based

data structures over hash or red/black tree based structures

due to their cache efficiency. Also, it demonstrates that our

optimistic B-tree implementation exhibits sequential perfor-

mance characteristics comparable to Google’s state-of-the-

art B-tree implementation. However, while Google’s solution

is thread unsafe, our concurrent B-tree is able to scale well

in a parallel environment.

4.2 Parallel Performance
To evaluate the parallel insert performance, we evaluate the

parallel scalability of our contestants. To that end, we insert

100M 2D points into an initially empty set using a varying

number of threads (strong scaling). Figure 4 summarizes

the obtained results for all our contestants when gradually

scaling the computation up to the full size of our two test
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Figure 3. Sequential performance of performance critical set operations.

systems. Besides the three thread-safe data structures (btree,

btree (n/h), and TBB hashset) we included two configura-

tions realizing synchronization through external means: one

variant with a global lock synchronizing insertions (google
btree) and another where inserts are performed by threads

on thread-private copies and merged through a subsequent

reduction step (reduction btree). While both techniques could

be applied to any set implementation, for our evaluation we

chose the fasted sequential external option available to us –

the Google B-tree.

Among the five contestants, only the global-lock based

approach failed – predictably – to gain performance improve-

ments through the utilization of more than a single thread.

The remaining data structures manage to do so in at least

one scenario. In absolute terms, however, TBB’s implementa-

tion is not able to compensate for its sequential performance

deficit through parallel scaling. Our optimistic B-tree outper-

forms TBB’s implementation by at least a factor of 8.5 with

1 thread, and up to a factor of 59 with more threads.

The reduction based approachmanages to obtain speedups

over sequential performance in the random order cases,

where the computation effort for the thread-local insertions

is dominating the concluding merge. By reducing this domi-

nation – either by making the thread-local insertions more

efficient (ordered) or by reducing the number of elements in-

serted by each individual thread (more threads) the potential

of this approach is reduced.

Regarding our B-trees, it can be observed that the oper-

ation hints cause little differences in the parallel insertion

performance in the given use cases – as it has been observed

in the sequential experiment above. Both manage to obtain

a speedup of approximately 5.8, 10.8, 8.8, and 10 in the 4 use
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(b) parallel insertion (random, single socket)
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(c) parallel insertion (ordered, multi socket, 4x8 cores)
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(d) parallel insertion (random, multi socket, 4x8 cores)

Figure 4. Parallel performance of insert operations.

cases. Furthermore, Figure 4c and Figure 4d illustrate the

scalability of the optimistic locking approach beyond socket

boundaries, while TBB’s hashset sustains significant perfor-

mance loses beyond the first socket boundary (not visible in

4d). Figure 4c thereby constitutes a use case performing most

operations within NUMA boundaries. This is due to the par-

titioning of the elements to be inserted among the threads

in the benchmarks, their pinning to cores, as well as the

default first-touch NUMA policy. It thus demonstrates the

achievable performance when being NUMA aware, while

Figure 4d does not have this advantage. Consequentially,

clear performance drops whenever growing beyond a sin-

gle NUMA domain are observed. Our data structure is not

inherently NUMA aware.

The provided data demonstrates the superior parallel capa-

bilities of our data structure within single and multi-socket

environments, compared to the reference data structures.

4.3 Processing Datalog Queries
For our last experiment, we adapted the Soufflé Datalog

engine to utilize different data structures in its evaluation

process. On top of this, we conducted large-scale, real-world

analyses and evaluated the resulting performance.

For our evaluation, we utilized two real-world bench-

marks: a context-sensitive var-points-to analysis using the

Doop framework [10], and a security vulnerability analysis

for an Amazon EC2 network. The Doop analysis was run

Table 2. Real-World Datalog Benchmark Properties.

Doop on DaCapo Amazon EC2 security

Datalog Property (avg. per benchmark) vulnerability

relations 493 287

rules 810 236

Doop on DaCapo Amazon EC2 security

Evaluation Statistics (avg. per benchmark) vulnerability

inserts 8.3e7 2.1e7

membership tests 1.5e8 4.2e9

lower_bound calls 2.1e8 2.5e9

upper_bound calls 2.1e8 2.5e9

input tuples 8.3e6 3515

produced tuples 2.5e7 1.6e7

on the suite of DaCapo benchmarks, comprising 11 differ-

ent Java programs. Both analyses comprise 100s of relations

and rules. Table 2 summarizes the properties of those two

benchmarks, along with runtime statistics for the inserts,

membership tests, and lower/upper bound calls.

Figure 5 illustrates the collected performance data for our

two benchmarks. Note that Figure 5a presents the total time

for analysis of all 11 DaCapo benchmarks for brevity. For

the Doop static program analysis, we observe that the per-

formance of our B-tree with a single thread is approximately

1.5× faster than the nearest reference data structure, the

Google B-tree. In parallel workloads, our B-tree implementa-

tion provides better scalability than the reference data struc-

tures with global locks. Compared to the concurrent TBB

hashset equipped Datalog engine, the optimistic B-tree based
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(b) Security vulnerability analysis (read heavy).

Figure 5. Comparison of different data structures for two real-world applications relying on large scale Datalog queries.

counterpart maintains similar scalability, however, perfor-

mance is approximately 4× better than the TBB hashset for

all numbers of threads. Additionally, the usage of operation

hints improved performance by up to 10%.

With the security vulnerability analysis, we observe that

our B-tree performs approximately 2× better than the TBB

hashset. Interestingly, with this workload, even the global

locked data structures demonstrate some scalability, since

it is read-heavy rather than write-heavy. We also note that

this security analysis contains more relations with fewer

tuples (1.2e7 out of the 1.6e7 produced tuples were concen-

trated in a single relation), and as a result, the hash-based

data structures perform better compared with the Doop pro-

gram analysis. Additionally, for this analysis, our B-tree with

operation hints performs almost 1.5× as well as our B-tree

without hints, indicating that ordered queries play an impor-

tant part in this workload.

With regards to operation hints, collected statistics show

that for the single-threadedDoop analysis, up to 54% of oper-

ations resulted in an operation hint hit, and up to 52% hits for

the 16 thread case. With the security vulnerability analysis,

these rates reach 77% for the single-threaded case and 76%

for the 16 thread case. This further suggests that the secu-

rity vulnerability analysis heavily involves ordered data, and

therefore demonstrates a larger performance improvement

with the addition of operation hints.

In both cases, the utilization of parallel resources provides

performance improvements over the best sequential version.

In theDoop case, speedup of 1.9× can be obtained, and in the

vulnerability case, a speedup of 8.4× compared to our B-tree

run with 1 thread. These improvements are on top of the

1.3-3× sequential improvement compared to other reference

data structures.

4.4 Comparison with Concurrent Tree Data
Structures

Our B-tree data structure is not the only concurrent tree data

structures. Alternatives include PALM tree [48],Masstree [36],

and B-slack tree [12]. However, there are a number of rea-

sons why such data structures are not suitable for Datalog

evaluation.

PALM tree [48] is a concurrent lock-free B+ tree implemen-

tation. It uses an internal synchronization strategy, where

elements to be inserted are added to an internal queue and

processed concurrently by the data structure itself. More-

over, PALM tree uses AVX instructions, and therefore only

supports single integer keys and not tuples as required for

Datalog processing.

Masstree [36] is built as a client/server architecture, de-

signed for use-cases requiring persistence across reboots.

Hence, it is not optimized for use in an in-memory Datalog

engine. Moreover, Masstree only supports strings as keys

and thus would require a significant redesign of Soufflé .

B-slack tree [12] constitutes a variation of B-tree that con-

strains the overall fill grade of all child nodes. As a result,

B-slack trees exhibit better worst-case space complexity than

conventional B-trees. B-slack trees weakens structural con-

straints and decouples the insertion from the rebalancing

steps making the locking of B-trees more local. However,

B-slack trees do not specify the locking scheme. Absolute

insertion performance or parallel scalability have not been

investigated in [12].

In addition to the practical limitations of these alterna-

tive data structures, we compared their performance to our

B-tree. Due to the limitations of the data structures for our

Datalog workload, we provide an additional set of bench-

marks inserting and reading a set of 10,000,000 fixed-size 32

bit integers, in both sequential and random order. The re-

sults are in Table 3. Note that Masstree was evaluated using

the included benchmark utility, as the client/server archi-

tecture could not be integrated with our microbenchmark

suite. The results demonstrate that our B-tree exhibits up to

3× better sequential insertion performance, and up to 1.5×

better random insertion performance, compared to the next

best data structure (Masstree). Moreover, our data structure

exhibited up to 8× higher throughput than B-slack tree, and

200× higher throughput than PALM tree.
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Table 3. Throughput inserting 32 bit integers

Throughput (ordered/random) [10
6
elements/second]

Threads B-tree PALM tree Masstree B-slack

1 17.5/2.91 0.38/0.10 5.99/1.90 2.73/1.09

2 45.61/5.23 0.44/0.13 10.11/3.37 3.83/1.94

4 89.64/9.71 0.47/0.16 19.52/6.17 7.32/3.15

8 97.19/16.97 0.49/0.20 36.38/11.41 11.29/4.84

The repo http://github.com/souffle-lang/ppopp19 contains
the experiments without some industrial benchmarks whose

source-code could not be disclosed.

5 Related Work
Data Structures for Datalog. Previous Datalog implemen-

tations have focused on various kinds of alternative data

structures including binary decision diagrams [52], Hashsets

e.g., [25, 47] and B-trees e.g., [9, 28]. In our experience, the

use of B-trees (as implemented in PA-Datalog / Logicblox

ver. 3 and Soufflé [16]) have shown to be the most scalable

for large ruleset/dataset benchmarks [28]. In particular, the

work presented in [29] demonstrates the advantages of B-

trees in novel indexing schemes specifically design for use

cases with complex rulesets and large datasets.

Parallel Datalog Engines. There has been a multitude

of parallelization efforts of Datalog in the past [14, 19, 27,

46, 49, 53, 54] mainly focusing on rewriting techniques and

top-down evaluations. Recently a number of state-of-the-art

engines have employed fine-grain parallelism to bottom-up

evaluation schemes. The work in [55] uses an in-memory

parallel evaluation of Datalog programs on shared-memory

multi-core machines. Datalog-MC hash-partitions tables and

executes the partitions on cores of a shared-memory multi-

core system using a variant of hash-join. To parallel evaluate

Datalog, Datalog rules are represented as and-or trees that

are compiled to Java. Logicblox version 4, uses persistent

functional data structures that avoid the need for synchro-

nization by virtue of their immutability, where insertions

efficiently replicate state via the persistent data structure. A

particular performance focused approach has been proposed

by Martınez-Angeles et al. who implemented a Datalog en-

gine running on GPUs [37]. Their basic data structure is an

array of tuples, allowing for duplicates. Thus, after every rela-

tional operation, explicit duplicate elimination is performed

– which for some cases vastly dominates execution time.

Also, the potentially high number of duplicates occurring

in temporary results quickly exceeded the memory budget

on GPUs. The applicability of this approach has only been

demonstrated for small Datalog queries. We point the reader

to [3, 44] for performace comparissons between engines on

large ruleset/dataset benchmarrks.

Concurrent Tree Data Structures. B-trees themselves

are among the most successful data structures for indexed

data. Lots of research effort has been addressing locking tech-

niques [21]. However, most of those focus on the secondary

storage use case [31]. For in-memory usage, a modified B-

tree known as B-link tree managed to eliminate the need

for read locks [33]. Unfortunately, we have not been able to

obtain an implementation for comparison. An alternative

approach has obtained good results by utilizing hardware

transactional memory features available on some recent Intel

architectures for synchronizing B-tree insert operations [30].

Their evaluation shows comparable parallel scalability to

our optimistic approach. However, special hardware sup-

port is required for those and multi-socket systems have

not been evaluated. Concurrency has been investigated in

several tree-like data structures for general use. For example,

the data structure in [11] is similar in spirit to our work with

an optimistic concurrency which allows invisible readers.

The approach in [17] maintains interval information to de-

termine the placement of data. The data structure in [26] is

based on single-word reads, writes, and compare-and-swap

where its algorithm operations only contend if concurrent

updates affect the same nodes. Other concurrent tree-like

structures have been presented in [4, 5, 8, 13, 15, 34, 39–41].

The involved design decisions are orthogonal to the locking

scheme presented by our work. Realizing a C++ version of

the B-slack tree utilizing our seq-lock-based synchronization

scheme has the potential of yielding a highly scalable con-

current implementation. A recent approach [12] constrains

the overall fill grade of all child nodes providing better worst-

case space complexity than conventional B-trees and weak-

ens the structural properties of the tree to improve the local-

ity of modifications. However, the design does not specify a

node locking scheme for a concurrent implementation.

6 Conclusion
In this paper, we presented the design of a specialized con-

current B-tree that is employed by the Soufflé Datalog en-

gine. Our relation data structure is a modified concurrent

in-memory variant of the widely utilized B-tree. Its novel

optimistic locking scheme along with novel operation hints

enables concurrent insertions to scale well beyond socket

boundaries, achieving up to 59× faster insertion times, and

up to 3× faster Datalog evaluation than industry standard,

state-of-the-art concurrent set implementations.
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