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Abstract—Modern parallelizing Datalog compilers are em-
ployed in industrial applications such as networking and
static program analysis. These applications regularly reason
about equivalences, e.g., computing bitcoin user groups, fast
points-to analyses, and optimal network routes. State-of-the-
art Datalog engines represent equivalence relations verbatim
by enumerating all possible pairs in an equivalence class. This
approach inhibits scalability for large datasets.

In this paper, we introduce EQREL, a specialized parallel
union-find data structure for scalable equivalence relations, and
its integration into a Datalog compiler. Our data structure pro-
vides a quadratic worst-case speed-up and space improvement.
We demonstrate the efficacy of our data structure in SOUFFLÉ,
which is a Datalog compiler that synthesizes parallel C++ code.
We use real-world benchmarks and show that the new data
structure scales on shared-memory multi-core architectures
storing up to a half-billion pairs for a static program analysis
scenario.

Keywords-Parallel Data Structures, Equivalence Relation,
Datalog Compiler, Semi-naı̈ve Evaluation

I. INTRODUCTION

Parallelizing Datalog compilers [1], [2] for shared-memory
multi-core computers have seen a proliferation in large-scale
applications including static program analysis [3], program
security [4], program optimizations [5], cloud computing [6],
and networking [7]. Datalog provides a succinct logic
representation for the application semantics, enabling users
to rapidly build and prototype scientific/industrial large-scale
applications.

Recently, modern state-of-the-art Datalog engines, such
as SOUFFLÉ [1], have demonstrated performance on a par
with hand-crafted tools, while maintaining the ease of use
and rapid-prototyping capabilities of the Datalog language.
SOUFFLÉ achieves this by utilizing parallel evaluation through
specialized parallel data structures [8], [9].

Many common applications of Datalog encode notions
of equivalence relations. An equivalence relation R is a
binary relation which is reflexive (if x is in the domain of
R, then (x, x) ∈ R), symmetric (if (x, y) ∈ R, then (y, x) ∈
R), and transitive (if (x, y), (y, z) ∈ R, then (x, z) ∈ R).
For example, for a Bitcoin user group analysis [10], the
relation encoding whether two users are the same users is
an equivalence relation. Examples of equivalence relations
also appear in points-to analyses [11], [12], SCCs for graph

analyses [13], and optimal network routes [14], all of which
are well-suited to implementation in Datalog.

However, current state-of-the-art Datalog engines require
equivalence relations to be expressed explicitly using default
data structures [15]. This explicit encoding of equivalence
relations may incur up to a quadratic overhead compared
to an optimized solution, often causing bottlenecks in the
Datalog evaluation.

At the same time, the union-find [16], [17] data structure
appears to be well suited for handling equivalence relations.
Union-find is typically implemented as a disjoint forest
of trees. Each tree represents a single equivalence class
and a tree node represents an element in the equivalence
relation. Storing an equivalence relation in a union-find
data structure requires only a linear amount of space in the
number of elements, far improving on the quadratic blow-
up of an explicit representation. A union-find data structure
becomes self-computing because of the implicit computations
of rules for reflexivity, symmetry and transitivity. For example,
inserting the equivalence pairs (1, 2) and (2, 3) into an empty
union-find data structure implicitly introduces additional pairs
such as (1, 1) by reflexivity, (2, 1) by symmetry, and (1, 3)
by transitivity. Although this data structure shows a lot of
promise, a union-find data structure cannot easily be adopted
for Datalog engines, as several key factors hamper their
integration.

1) The semi-naı̈ve evaluation strategy, which is the de-
facto standard for modern Datalog engines [18], cannot
accommodate self-computing data structures and must
be adapted.

2) The typical disjoint forest implementation of the union-
find data structure has the problem that it assumes a
dense and a priori known domain, where elements are
values from 1 to n and n is fixed. This is an obstacle for
practical use in a Datalog engine because the domain
of any relation may contain a set of arbitrary values
and may grow throughout evaluation. Therefore, an
on-the-fly densification (i.e. finding a unique mapping
between the domain elements and numbers from 1 to
n) is required so that efficient union-find data structure
can be implemented.

3) In order to integrate the data structure into the Datalog
evaluation algorithm, we need data structures to expose



an interface mimicking that of an ordinary relation.
Therefore, we must provide an abstraction of the
underlying union-find data structure to enable its use
in Datalog evaluation.

4) The final challenge is effective parallelization of the
union-find data structure.

In this paper, we present EQREL, a novel parallel equiva-
lence relation data structure designed for parallelizing Data-
log compilers. Our data structure allows the implicit storage
and self-computation of equivalence relations, incurring only
a linear amount of storage compared to the quadratic blow-up
of an explicit representation. For a domain D of n elements,
an equivalence relation may have up to n2 pairs. Therefore,
for an explicit representation, up to O(n2) space is required,
while EQREL stores each element once, using only O(n)
space.

To incorporate equivalence relations into Datalog, we
extend the semi-naı̈ve evaluation strategy to support self-
computing data structures. To ensure a dense domain, we
employ a densification mechanism that allows the deployment
of an efficient union-find data structure implementation.
Lastly, we design the EQREL data structure to support
concurrency, thus allowing integration into a parallel Datalog
engine.

We have implemented the EQREL data structure in the
parallel Datalog compiler SOUFFLÉ. Our data structure
compactly stores data, which results in quadratic speed-up
and space improvements over explicitly storing equivalence
relations. We have evaluated our data structure on several
real-world benchmarks that store up to half a billion pairs and
demonstrated that it scales five orders of magnitude better
than an explicit representation using B-Trees.

The contributions of our paper are summarized as follows:
• extending the parallel semi-naı̈ve evaluation strategy for

equivalence relations in a parallelizing Datalog compiler,
• designing a three-layered, self-computing data struc-

ture for efficient and parallel handling of equivalence
relations, and

• providing experimental evaluation on industrial sourced
applications.

The paper is structured as follows. In Section II we provide
background and motivate the need for the EQREL data
structure. In Section III, we describe the design of EQREL,
and its integration into a parallelizing Datalog compiler. In
Section IV, we evaluate the performance of our data structure
for various use cases, compared to an explicit representation.

II. BACKGROUND AND MOTIVATION

We use the standard terminology for Datalog, taken
from [18]. A tuple is of the form R(c1, . . . , cn), where the
relation R has arity n, and each ci is a constant. A Datalog
program P is a finite set of logic rules, which compute a
set of tuples from a set of input tuples. Each rule is a Horn

clause of the form: Rh(vh) :- R1(v1), . . . , Rk(vk) where
the :- operator denotes a logical implication, each Ri(vi)
is an atom, where Ri is a relation and vi is a vector of
appropriate arity, containing constants or variables. Each
atom can be negated, with restrictions (e.g., stratification).
The atom on the left side of the :- operator is the head of
the rule, and the k atoms on the right side is the body.

Each rule is read right-to-left as a universally quantified
implication. Thus, if R1(v1), . . . , Rk(vk) holds under an
evaluation, then Rh(vh) holds. We also distinguish input and
computed relations. Any relation occurring only in the body
of rules is part of the Extensional Database (EDB), or input.
In contrast, any relation occurring in the head of any rule
is part of the Intensional Database (IDB), and is computed
from the rules in the Datalog program.

Apart from its use as a database query language, Datalog
has been used as a logic specification language for specifying
properties of systems that are checked using a Datalog solver.
An example Datalog program is given in Figure 1. In this
example, the transaction relation is the EDB, while the
same_user relation is the IDB. This program implements
a blockchain wallet analysis, which clusters users that appear
to be the same. We assume that if two users sign the same
transaction, then they both control that same private key and
must be the same user. This is expressed in rule 1 (lines 1
and 2), where users u1 and u2 sign the same transaction tx,
and thus are determined to be the same user. Rule 2 (lines
3 and 4) expresses the transitive property, that is that if u1
and u2 are the same user, and if u2 and u3 are the same
user, then u1 and u3 should also be the same user. Note that

1 same_user(u1, u2) :- transaction(tx, u1),
2 transaction(tx, u2).
3 same_user(u1, u3) :- same_user(u1, u2),
4 same_user(u2, u3).

Figure 1: Blockchain Wallet Analysis

the blockchain example in Figure 1 demonstrates the use of
an equivalence relation. While there are no explicit reflexive
and symmetric rules, rule (1) captures the semantics of these
properties, as users u1 and u2 are unordered and are maybe
the same user. Therefore, equivalence relations may show
up even when all 3 properties are not explicitly stated.

To evaluate this Datalog program, the de facto approach is
known as semi-naı̈ve evaluation [18]. Semi-naı̈ve evaluation
is a bottom-up evaluation approach, that starts from the input
tuples and iteratively computes new tuples until a fixed point
is reached. Semi-naı̈ve evaluation uses auxiliary relations,
namely, a new and a ∆-version of each recursive relation.
Relation newk contains the new tuples (including recomputed
tuples) computed in iteration k, while relation ∆k stores
all new tuples (excluding recomputed tuples) generated in
iteration k. These auxiliary relations avoid the recomputation



of previously computed tuples. For the example in Figure 1,
Semi-naı̈ve evaluation transforms the recursive rule in line 2
into two new rules:

newk+1
same u(u1, u3) :- ∆same uk(u1, u2), same uk(u2, u3)

newk+1
same u(u1, u3) :- same uk−1(u1, u2), ∆same uk(u2, u3)

In each rule, k denotes the current iteration of the evaluation.
Once the evaluation of these two rules are completed for the
current iteration, the contents of the new and ∆ relations are
merged into the main relation:

∆same uk+1 := newk+1
same u \ same uk

same uk+1 := ∆same uk+1 ∪ same uk

For the given Datalog program, SOUFFLÉ performs sev-
eral transformations, producing the OpenMP parallelized
C++ code shown in Listing 2, which was simplified for the
sake of readability. This C++ code implements a specialized
semi-naı̈ve bottom-up evaluation of the Datalog program,
computing a least fixed point that coincides with the result
of the logic specification.

In the first stage, we iterate over the transaction
relation (lines 5 to 13). For each tuple t1 in re-
lation transaction, we iterate over the subset of
transaction containing tuples with the same first element
as t1 (line 7). The resulting tuples are inserted into relation
same_user (line 10).

In the second stage, we evaluate the recursive rule.
The semi-naı̈ve evaluation introduces auxiliary relations
delta_same_user and new_same_user for storing
the new tuples generated in the previous iteration and current
iteration, respectively. We first iterate over delta_same_-
user (line 19), finding tuples t1 ≡ (u1, u2). Then, we
iterate over same_user (line 20), to find tuple (u2, u3)
matching t1. Finally, the tuple t2 ≡ (u1, u3) is inserted into
new_same_user (line 24).

In the example, we have used C++ STL containers for
representing relations. However, Datalog engines use highly
customized relational data structures. For example, SOUFFLÉ
contains a framework that allows the integration of any set
container [8], [9], provided the following operations exist:

• insert(t) inserts a fixed sized n-ary integer tuple t into
a set of n-ary tuples concurrently, ignoring duplicates.

• begin() and end() provides iterators to traverse the set
concurrently.

• lower bound(a) and upper bound(a) provides iterators
to lower and upper bound values of a stored in the set,
according to a set instance specific order.

• find(t) obtains an iterator to the tuple t in the set, if
present.

• empty() determines whether the set is empty.
Since there is no universal best relational data structure
for Datalog, the SOUFFLÉ framework offers a portfolio of
relational data structures that provide applications a choice.

1 using Tuple = array<size_t,2>;
2 using Relation = set<Tuple>;
3 Relation evaluate(const Relation

&transaction){
4 Relation same_user;
5 // same_user(u1,u2) :- transaction(tx,u1),

transaction(tx,u2).
6 for (const auto &t1: transaction) {
7 for (const auto &t2 : transaction) {
8 if (t2[0] == t1[0]) {
9 Tuple t3({t1[1], (*it)[1]});

10 same_user.insert(t3);
11 }
12 }
13 }
14 // new_same_user(u1, u3) :-

delta_same_user(u1, u2), same_user(u2,
u3).

15 Relation delta_same_user = same_user;
16 while(!delta_same_user.empty()){
17 Relation new_same_user;
18 #pragma omp parallel for
19 for (const auto &t1: delta_same_user){
20 for (const auto &t2 : same_user) {
21 if(t2[0] == t1[1]) {
22 Tuple t3({t1[0], (*it1)[1]});
23 if (same_user.find(t3) ==

same_user.end())
24 new_same_user.insert(t3);
25 }
26 } // end of for same_user
27 } // end of for delta_same_user
28 /* omitted code similar as above for

new_same_user(u1, u3) :- same_user(u1,
u2), delta_same_user(u2, u3) */

29 same_user.insert(new_same_user.begin(),
new_same_user.end());

30 delta_same_user.swap(new_same_user);
31 } // end of while
32 return same_user;
33 }

Figure 2: Compiled C++ Code

This paper presents the integration of a specialized data
structure designed for efficient computation and storage of
equivalence relations. One of the major novelty of this new
data structure is that it becomes self-computing; that is, the
rules for reflexivity, symmetry, and transitivity is computed
by the data structure itself (instead of performing rules in
the semi-naı̈ve evaluation to obtain new tuples).

A. Equivalence Relations in Datalog

Equivalence relations are binary relations that are reflexive,
symmetric, and transitive. Any elements that are related
by virtue of these properties are considered to be within
the same equivalence class. We include a Datalog snippet
demonstrating a binary relation with equivalence relation
semantics in Figure 3. Note that the reflexivity in the



Datalog snippet is only partially specified because of the rule
relation(a,a) :- relation(_,a) is subsumed by
the symmetry rule (2).

1 relation(a,a) :- relation(a,_). // (1)
reflexivity

2 relation(a,b) :- relation(b,a). // (2)
symmetry

3 relation(a,c) :- relation(a,b), // (3)
transitivity

4 relation(b,c).

Figure 3: Explicit Equivalence Relations in Datalog

Using this explicit representation of an equivalence
relation, the program derives many output tuples as a result
of a single input tuple. For example, if the input to the above
example was the tuple relation(1, 2), the resulting
output would be: relation(1,1), relation(1,2),
relation(2,1), relation(2,2). If the EDB
also contained relation(2,3), five additional
tuples would be part of the final computed
knowledge; i.e., relation(1,3), relation(2,3),
relation(3,1), relation(3,2),
relation(3,3). In this example, only a single
equivalence class exists; i.e., {1, 2, 3}.

The complexity of an equivalence class representation
differs from an explicit representation. Let R ⊆ D×D be an
equivalence relation on a domain D. The overhead required
to store an equivalence relation explicitly depends on the
characteristics of the equivalence classes. The worst-case
occurs when R is a single equivalence class, where |D|2
storage overhead is required for an explicit representation, and
the best-case is if each element in D is its own equivalence
class, where only |D| storage overhead is required. Mean-
while, regardless of the characteristics of the equivalence
classes, an implicit equivalence class representation only has
|D| elements to deal with.

III. PARALLEL EQUIVALENCE RELATION DATA
STRUCTURE

In this section, we present the design of the concurrent self-
computing EQREL data structure for semi-naı̈ve evaluation.
The data structure has three layers, namely, (1) an equivalence
relation layer, (2) a densification layer and (3) a disjoint-set
layer. The equivalence relation layer provides an interface for
the data structure, imitating an explicit relation representation
with operations such as iteration over pairs and insertion; the
densification layer compacts the domain of the equivalence
relation such that a fast array-style implementation for the
disjoint-set layer can be employed; and the disjoint set layer
implements a wait-free union-find data structure.

A. Equivalence Relation Layer

The equivalence relation layer provides an abstraction
layer, so that semi-naı̈ve evaluation can use the data structure
transparently (i.e., as if all equivalent pairs were stored
explicitly). All operations performed on this layer interact
with the lower layers, where the actual data is managed. The
interface of this layer is designed to mimic the functionality
of a binary relation stored explicitly, allowing operations
such as iteration, set partitioning (for parallelization), and
concurrent insertion. The equivalence relation layer includes
an evaluation extension such that EQREL can be used for
∆-relations without compromising correctness of Datalog
evaluation.

Evaluation Extensions: A major reason precluding
the use of equivalence relations in state-of-the-art Datalog
engines is that the ∆-relations may become an under-
approximation in naı̈ve equivalence relation implementations.
Consider the example in Figure 4. The current relation in
iteration k contains 3 equivalence classes: {a, b, c}, {f, g},
and {d, e}. The new knowledge generated in iteration k + 1
contains 2 equivalence classes: {b, f} and {g, c}. If the
standard semantics of semi-naı̈ve evaluation were used (i.e.,
∆k+1

R := newk+1
R \Rk), then the ∆-relation would be equal to

the new relation. However, in this case the new relation should
actually join the equivalence classes {a, b, c} and {f, g}, and
so tuples such as (a, f) would be implicitly generated. Such
implicit tuples are not captured by the standard semi-naı̈ve
evaluation with EQREL, and so we require to extend the
∆-relation when it is computed. We denote this extension
operator as �, so that

∆eqrelR
k+1 = newk+1

R �Rk

The extension of the delta equivalence relation is im-

a 

b 

c 

f g 

d 
e 

R 
k 

b 

f 

g c 

newR 
k+1 

f 

k+1 
ΔR 

b 

a c 

g 

Figure 4: Resulting delta relation after the extension

plemented by Algorithm 1. This algorithm takes as input
the current relation Rk and the new relation newk+1

R , and
computes an extended relation ∆k+1

R . The algorithm iterates
over each element e of newk+1

R , and finds the equivalence
class in Rk that contains e (denoted as class). The class
is then inserted into ∆k+1

R as an equivalence class, thus
capturing the extension semantics, since there are implicit
tuples generated from elements of class, and e. Algorithm 1
operates in amortized O(α(n)n) time: each element is visited
at most once where it will at most perform a constant number



of find or union queries to find the representatives of a
class or to insert a pair into a relation.

Note, however, that the result of Algorithm 1 is an over-
approximation of a ∆-relation in a standard semi-naı̈ve evalu-
ation. Superfluous pairs are marked in blue in Figure 4. This
is a side-effect of storing the ∆-relation as an equivalence
relation, which implicitly computes equivalence tuples. The
over-approximation will not affect the correctness of semi-
naı̈ve evaluation: in the worst case, some recomputation of
previously computed tuples will be performed during Datalog
evaluation.

1: procedure EXTEND(origR, newR)
2: new relation← empty equivalence relation
3: element list← empty set
4: . Add elements that exist in both sets to our worklist
5: for element ∈ ELEMENTS(newR) do
6: if element ∈ ELEMENTS(origR) then
7: element list.ADD(element)
8: . add classes from origR that contain an element

from element list
9: for element ∈ element list do

10: class← equivalence class in origR that contains
element

11: for child ∈ ELEMENTS(class) do
12: new relation.INSERT(element, child)
13: . Ensure we don’t visit a class twice
14: if child ∈ element list then
15: element list.REMOVE(child)
16: . add all classes within newR
17: for class ∈ CLASSES(newR) do
18: rep← REPRESENTATIVE(class)
19: for element ∈ class do
20: new relation.INSERT(rep, element)
21: return new relation

Algorithm 1: Return an extended relation

Iterators: The iterators of EQREL are required to
simulate an explicitly represented binary relation. However,
since the equivalence relation is represented implicitly via
a union-find data structure, the construction of iterators for
simulating an explicit representation is more involved. For
the construction of the iterators, we process each equivalence
class separately and produce for each equivalence a list that
can produce the pairs for the iterators. These lists are volatile
and are implemented using a cache mechanism, i.e., as soon
as new pairs are inserted into EQREL, the lists for the iterators
are discarded.

The necessity of using a cache mechanism for iterators
is because the lower layers of the data structure store the
full equivalence relation in a single large list. To iterate
over a single equivalence class in this list would require
to iterate over every element, checking which equivalence

class that element belongs to, exhibiting a O(α(n)n2) worst-
case complexity. By utilizing a caching mechanism where
each equivalence class is stored in a separate list, a single
equivalence class can be iterated over using a double nested
for-loop. The cache mechanism exhibits O(α(n)n) worst-
case complexity runtime for constructing the iterators, and
O(d2) worst-case complexity runtime to iterate over an
equivalence class, where d is the size of the equivalence
class. Another advantage of the cache mechanism is that
equivalence classes are stored more compactly in memory
(rather than dispersed throughout a large array), thus leading
to better cache coherence during iteration.

Internally, the caches for iterators are stored in a cache map,
where the keys are the representatives of each equivalence
class, and the values are the cache arrays storing that
equivalence class. Thus, iterating over a subset of the relation
(i.e., all pairs where the first/second element is fixed) is
efficient, as finding the correct equivalence class is a lookup
of the representative for that element.

To generate the caches, we first create the aforementioned
mapping from each disjoint set to its corresponding cache
list, using a specialized concurrent B-tree [8]. To fill the
cache lists, we iterate through each disjoint set in the
underlying union-find data structure. The cache generation
algorithm is illustrated in Algorithm 2, showing that it
interacts directly with the lower levels of the data structure.
As the above algorithm is designed to be distributed across

1: procedure GENERATE CACHE(rel)
2: for element ∈ rel.disjoint set do
3: drep ← rel.disjoint set.FIND(element)
4: sparse rep ← rel.TOSPARSE(drep)
5: sparse element ← rel.TOSPARSE(element)
6: . Append sparse element to a list determined by

the representative of the equivalence class
7: if sparse rep 6∈ rel.cache then
8: rel.cache[sparse rep] ← empty list
9: rel.cache[sparse rep].APPEND(sparse element)

Algorithm 2: Generate the equivalence cache

parallel workloads, in the actual implementation we iterate
over the elements by assigning portions of the disjoint set
across different threads. Thus, it is important that we use
a thread-safe list for the caches, which we describe in
Section III-D.

Iterator Partitioning.: The EQREL data structure is
designed to facilitate effective concurrent usage. To achieve
load-balancing and improve cache coherence, the iteration
space is partitioned so that each thread can iterate over
their own portion of the data structure. For partitioning the
data structure, we design a partition(count) operation,
which generates approximately count iterators over the
equivalence relation.



For this purpose, we introduce two new iterator creation
procedures: CLOSURE generates an iterator that covers all
pairs represented by an equivalence class, and ANTERIOR
generates an iterator for an equivalence class with a fixed first
element (i.e., iterating over all x for (c, x) where c is fixed).
Our heuristic generates these partitions as demonstrated in
Algorithm 3. If there are more disjoint sets than the number
of partitions, we generate a CLOSURE iterator for each
equivalence class (lines 4 to 8). Otherwise, we split up large
equivalence classes, with one iterator for each element in
the class (the element is fixed as the first element using
ANTERIOR, lines 13 to 16), and create a CLOSURE iterator
for small equivalence classes (lines 17 to 19).

1: procedure PARTITION(rel, num iters)
2: iterators← empty list
3: . Special case: supply an iterator per equivalence

class
4: if NUMCLASSES(rel) ≥ num iters then
5: . Add an iterator that covers the entire class
6: for class ∈ equivalence classes do
7: iterators.APPEND(CLOSURE(class))
8: return iterators
9: . Approximate pairs per equivalence class

10: ppc← SIZE(rel)÷ num iters
11: for class ∈ CLASSES(rel) do
12: . if this class needs to be split up
13: if SIZE(class) ≥ ppc then
14: for element ∈ class do
15: . generate iterator covering (element, *)
16: iterators.APPEND(ANTERIOR(element))
17: else
18: . otherwise cover the entire class
19: iterators.APPEND(CLOSURE(class))
20: return iterators

Algorithm 3: Partition the equivalence relation to generate a
number of iterators, which cover all pairs stored within

B. Densifier

The union-find implementation of the lower layer uses a
contiguous array for processing and representing disjoint-
sets efficiently. Within this array, the elements are encoded
using their array index as an identifier; these identifiers
we refer to as dense values. As elements within the input
domain of the equivalence relation are not necessarily tightly
encoded, we require a mapping between these sparse values
and dense values. In addition to this sparse-to-dense mapping,
we require an inverse mapping, for internal operations. We
assign these sparse values dense values incrementally, on
demand. A sparse value when densified will always resolve
to the same dense value; similarly, for the dense-to-sparse
mapping. The bijective mapping is implemented by two data

structures; the sparse-to-dense mapping is stored within a
specialized B-tree [8], whilst the dense-to-sparse mapping
is stored using a custom thread-safe random-access list,
discussed in Section III-D. Although the task of the densifier
is basic, great care must be taken to implement the densifier
efficiently.

We have applied slight modifications to a high-performance
B-tree implementation [8] such that an atomic counter is
incremented on each insert and that value is automatically
inserted into newly created element nodes. It is this counter
value that produces new dense values as shown in the insert
procedure. When a dense value is newly created, the sparse
value is inserted into the random-access list at the index of
dense− 1. Retrieving a sparse value given a dense value is
thus trivial.

C. Disjoint-Set Layer

Union-find is an efficient data structure to partition a set
of elements D into disjoint sets. Conceptually, these disjoint
sets partition the set of elements into equivalence classes.
A union-find data structure must support the following
operations: make_set which creates a new disjoint set
with one element, union which merges the disjoint sets of
two elements, and find which returns the representative of
the disjoint set containing an element.

Union-find data structure represents a disjoint set as a tree
where the root of the tree becomes the representative element
of that disjoint set. The tree can be either be represented as
a dynamic tree data structure which may result in a slower
implementation. Alternatively, the tree can be represented
by an array. For example, Anderson’s parallel union-find
implementation [19] stores the elements in an array whose
array elements contain a record that contains two fields: the
parent index, and a rank. The index of an array element
represents the element itself, the parent index links the
element to its parent in the tree. The rank represents the
quasi-height of the element.

However, with an array representation, the domain of
elements is assumed to be fixed, i.e., the size of the
array determines all possible elements that can be stored.
While evaluating rules, new elements may be generated
arbitrarily, and so an expanding domain is required. C++’s
std::vector may be suitable for this task, however, it is
not concurrent, and inefficiently requires copying of elements
when the underlying container is filled. We introduce a
new high-performance implementation of Anderson’s parallel
union-find data structure using our custom concurrent expand-
ing list data structure, PiggyList described in Section III-D.
Note that Datalog relations are growing monotonically [18],
and hence no deletion operations are required.

D. PiggyList

Named due to the expanding nature of the data structure,
this similar to a simplified version of the Intel Threading



Building Blocks (TBB) concurrent_vector [20], in-
stead supporting two modes of operation: appending, and
random-access element creation. This list is used in multiple
places in the EQREL layered data structure: (1) the list in the
equivalence cache (operates in append mode), (2) the dense-
to-sparse mapping in the densifier layer (operates in random-
access mode), and (3) the array containing the disjoint-set
forest (operates in append mode).

In append mode, elements are written to the next available
index within a block, and if the available slots are depleted,
a new block is created with a size double of the previous. A
lookup-table is updated with the location of the new block.

For finding the corresponding block index, compiler
intrinsic integer logarithms are used that only require slight
modification for varying starting block sizes. This data
structure is efficient with regards to locks - it is only necessary
to lock when new blocks are added. However, it is a very rare
event that new blocks are added, i.e., a logarithmic number
of times due to the use of double-checked locks.

IV. EXPERIMENTS

In this section, we evaluate the performance of our EQREL
data structure and its integration in the SOUFFLÉ Datalog
compiler. Our experiments aim to validate the following
claims:

• Claim I: The EQREL data structure is more scalable
than an explicit representation of equivalence relations.

• Claim II: EQREL performs better than a state-of-the-
art B-tree when integrated into a Datalog compiler, for
real-world use cases containing equivalence relations.

• Claim III: The EQREL data structure uses less memory
than an explicit representation in real-world Datalog
benchmarks.

Our EQREL data structure is implemented in C++ and is
open-source, available under the UPL license. In a Datalog
program, a relation can be tagged as an equivalence relation
using the eqrel qualifier. For such relations, the explicit
equivalence rules (reflexivity, symmetry, and transitivity) are
not required, and the synthesizer of SOUFFLÉ will employ
the EQREL data structure to self-compute an equivalence
relation.

The performance of the EQREL data structure is evaluated
through a set of micro-benchmarks as well as real-world
Datalog programs in the SOUFFLÉ engine. We compare the
performance of the implicit representation of equivalence
relations in EQREL to an explicit representation. The explicit
representation uses a state-of-the-art B-tree designed for
Datalog evaluation [8].

We have run our experiments on an Intel Xeon Gold
6130 CPU with 16 cores (32 threads) at 3.7 GHz, and
192 GB memory. The operating system is Fedora 29, with
GCC version 8.3.1 used for compiling SOUFFLÉ synthesized
programs.

A. Microbenchmarks

In this section, we evaluate the performance of EQREL on
equivalence relations of different characteristics. The main
experiment measures the execution time for the two most
important operations in SOUFFLÉ: insertion and iteration.
We compare the performance of EQREL with a state-of-the-
art B-tree [8] which stores an explicit representation of the
same data. For these benchmarks, we test four different size
characteristics. Assuming we have n total elements, we test:

• n equivalence classes, with each element in its own
equivalence class, and therefore the only pairs are those
with the same element repeated. This case results in n
pairs of elements, and is the best case for the explicit
representation as the implicit representation does not
gain any meaningful implicit information denoted as
tiny).

• n
2 equivalence classes, with two elements per equiva-
lence class, and therefore each equivalence class contains
8 pairs of elements. This case results in 4n pairs of
elements. (denoted as half )

•
√
n equivalence classes, each containing

√
n elements.

This results in n
3
2 pairs of elements (denoted as sqrt).

• 1 equivalence class, with all elements being in the same
equivalence class. This results in n2 pairs of elements
and is thus the worst case for the explicit representation
(denoted as large).

To evaluate the performance of the insertion operation, we
insert varying numbers of pairs into EQREL and the B-tree.
For EQREL, we insert n pairs, with the result implicitly
representing all pairs in the equivalence relation. For the B-
tree, we must insert each pair explicitly, and thus we expect
a significant runtime and memory blow-up for sqrt and large
cases. To evaluate the iteration operation, we start with data
structures already containing a set of pairs representing an
equivalence relation. Then, we iterate through this full set,
measuring the amount of time taken to iterate through varying
numbers of pairs.
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Figure 7: Performance of single-threaded scan over full
relation

Figure 5 shows the performance of the insertion operation
for EQREL compared to the explicit representation stored in a
B-tree. We observe that for the large equivalence relation case,
EQREL outperforms the explicit representation by multiple
orders of magnitude for all input sizes, with the largest
input size demonstrating an improvement of up to 4.2 orders
of magnitude. This improvement is a result of the large
difference between storing n tuples for EQREL, compared
to n2 tuples for the explicit representation. On the other
hand, the tiny equivalence relations case is the worst case for
EQREL, since both EQREL and the explicit representation
must store n tuples and no implicit information is gained
by using EQREL. However, even in this situation, EQREL
exhibits comparable performance to the explicit B-tree,
having an overhead of less than 4× for the largest element
domain. Moreover, we observe that EQREL performs similarly
across all sizes of equivalence relations, as EQREL stores
n tuples of data regardless of the sizes of the equivalence
classes.

Figure 6 shows the memory usage for EQREL compared
to the explicit representation. We observe a similar pattern,

with the explicit representation requiring over 3.6 orders
of magnitude more memory to store the large equivalence
relation. We also observe that EQREL uses a constant amount
of memory for all cases of equivalence class sizes when
the number of total elements is the same. Therefore, we
demonstrate that the memory usage of EQREL depends on
the number of elements in the equivalence relation, rather
than the number of pairs, as the explicit representation does.
Thus, EQREL scales extremely well when the data contains
large equivalence classes.

We also repeated the experiment with a larger dataset, to
overcome the limitations of measuring memory via resident
set size. Through these experiments, we determined the
memory requirements to store a set of pairs forming an
equivalence relation. The explicit B-tree required up to 9.8
bytes per pair in the large case and 12.4 bytes per pair
in the tiny case. Comparatively, EQREL required 0.000034
bytes per pair in the large case, due to the extensive implicit
information contained within. However, in the worst case of
tiny equivalence classes, EQREL requires 34.3 bytes per pair
due to the overheads of maintaining separate equivalence
classes. In comparison, a direct encoding would require 8
bytes per pair, and thus EQREL significantly outperforms
this when implicit information is stored.

Figure 7 shows the performance of the iteration operation,
where we iterate over all pairs in an equivalence relation.
Note that for iteration, since the result must be equal to the
total number of explicit pairs (i.e. up to n2 tuples), we expect
an explicit representation to perform better than EQREL since
EQREL is required to reconstruct implicitly stored informa-
tion. We observe that EQREL performs similarly for tiny, half,
and sqrt cases, indicating an overhead for building the caches
required for iteration. EQREL performs slightly worse in the
tiny case compared to half, as a result of each equivalence
class requiring a separate cache array, and therefore the
smaller caches lead to worse cache coherence. However, note
that for the sqrt and large cases, EQREL performs within a
1.6× overhead over the explicit representation, indicating that
once the cache building overheads are overcome, iteration is
reasonably efficient compared to the B-tree structure.

These microbenchmarks substantiate Claim I, i.e., that the
EQREL data structure is more scalable for large equivalence
classes than an explicit representation. The runtime speed-
up of up to 4.2 orders of magnitude, and memory usage
improvement of up to 3.6 orders of magnitude, demonstrate
the suitability of EQREL for storing equivalence relations.

B. Industrial Scale Applications

Points-to analysis of the OpenJDK: Points-to analysis is
a form of static program analysis which computes an abstract
representation of the run-time memory configuration, i.e., set
of all possible mappings between variables and objects. These
forms of analyses are often costly for real-world programs
and require abstractions that balance precision and scalability.



Steensgaard points-to analyses [11] provides an abstracted
semantics for the interaction of points-to sets over the
duration of the analysis; the points-to sets of variables are
equivalence classes and merge when interacting with each
other. For example, when a variable y is assigned to x, the
points-to set of x and y merge. Traditionally, Steensgaard
analyses were not amenable to representation in Datalog due
to the large number of pairs required to be stored. However,
with our EQREL data structure, Steensgaard analyses become
tractable, even for large input sizes.

In this experiment, in order for the computation to be
tractable for the explicit representation, we operate on a
subset of the OpenJDK, namely only generating the points-
to set for the java.lang libraries using a Steensgaard
analysis. We test several versions of the points-to analysis:

1) explicit The explicit representation of the Steensgaard
field-sensitive analysis in Datalog

2) eqrel Using EQREL to implicitly equivalence semantics
of Steensgaard

3) non-symmetric A stripped explicit representation, re-
moving the symmetry in order to make it more tractable

In Listing 1, the base Datalog program for the explicit
program is shown. The eqrel program is achieved by
removing the equivalence relation simulation rules and adding
an EQREL annotation, whilst the non-symmetric program is
achieved by removing just the symmetric rule on line 11.

Listing 1: Steensgaard Datalog Program
1 // allocation sites (x = new o())
2 vpt(x,o) :- alloc(x,o).
3 // assignments (x = f)
4 vpt(x,y) :- assign(x,y).
5 // load/store pairs (x.f = y; p = q.f;, q

and x alias)
6 vpt(y,p) :- store(x,f, y),
7 load(p,q,f),
8 vpt(x,q).
9 // simulate equivalence relation making the

relation vpt
10 vpt(x,x) :- vpt(x,_). // (1) reflexive
11 vpt(y,x) :- vpt(x,y). // (2) symmetric
12 vpt(x,z) :- vpt(x,y), // (3) transitive
13 vpt(y,z).
14 // output the number of pairs
15 .printsize vpt

We set a time-out for the analysis in Figure 8 to be 9 hours.
Despite this long time-out, only the 16- and 32-threaded
finished with runtimes of over 8 and 6 hours, respectively.

All EQREL programs for each thread take approximately
the same time, so that multiple threads provide no benefit to
runtime, due to the effect of the multi-threading overhead
on a program with a short duration, of around 100ms. The
non-symmetric analysis still carries a significant margin of
overhead - ranging from around 2 orders of magnitudes
slower for one thread, to just under one order of magnitude
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Figure 8: Execution time for the Steensgaard analysis

slower at 32 threads.
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Figure 9: Memory Consumption of the Steensgaard analysis
for a variety of threads

Despite the experiment running on only a subset of the
OpenJDK, the explicit representation still requires 10GB of
memory. As is expected, memory consumption is equivalent
across all threads, for each program type. Whilst the non-
symmetric program stores fewer pairs than the EQREL
program, it carries an overhead of 18% as it must store
these pairs explicitly. In addition, we ran this experiment
with the full OpenJDK and observed that the EQREL version
finished in under 6 seconds on a single thread, whilst the
explicit representation timed out after a week.

Bitcoin user identification: The aim of this Datalog
program is to take a set of Bitcoin transactions, and partition
the associated wallets into disjoint sets based on the user
submitting the transaction. A Bitcoin transaction consists of
a set of input wallets and a set of output wallets. The user
submitting the transaction specifies the amount of Bitcoin
each input wallet contributes, and the amounts sent to each
output wallet. Each wallet is represented in the transaction
by a public key. The input wallets are associated with private
keys held by the user submitting the transaction, which is



important for verifying the authenticity of the transaction. To
determine whether two wallets are controlled by the same
user, Reid and Harrigan [10] propose the following heuristic.
All public keys input to the same transaction are considered to
be controlled by a single user, as that user must have control
of all the associated private keys. Notably, this heuristic can
be represented by an equivalence relation, as it is reflexive
(public keys are owned by the same user as their own user),
symmetric (likewise), and transitive (inputs across multiple
transactions may be shared). We wish to demonstrate the
efficiency of the implicit representation over the previous
method of explicit representation of equivalence relations. As
our dataset, we use a subset of all Bitcoin transactions from
2017 containing over 200 million transaction/input pairs. We
are only able to analyze a subset of the transactions due
to computational and space requirements. In Table I, the
left-hand column denotes how many pairs are loaded in as
facts. In order to observe the scaling over both workload,
and thread count, we run the EQREL and explicit Datalog
programs over three sizes of input pairs, and up to 32 threads.

Whilst the mean size of each disjoint set is less than two
(as is the case in the halfeqrel and halfexplicit
benchmark in IV-A), the number of pairs is larger than
this would indicate, due to the presence of several large
equivalence classes.

In this experiment, we seek to provide a second backing to
Claims II and III, in that for another real-world dataset, the
EQREL version scales well for large inputs over a number
of threads, and outclasses the performance of the equivalent
explicit representation.
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Figure 10: Execution time of a Bitcoin user analysis over
varying sized inputs

Not included in the graph is the runtime for the explicit
Datalog program for 5 million input transaction pairs, all
tests timed out after 10 hours, whilst all EQREL programs
finished under 100 seconds for that input size.

From Figure 12, we observe that for EQREL, the scala-
bility across threads improves for inputs larger than 100k,
improving 7× from 1 to 32 threads. For the 5000 input run,
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Figure 11: Memory consumption of a Bitcoin user analysis
over varying sized inputs
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Figure 12: Speedup of the Bitcoin user analysis

there was no benefit running on multiple threads, that again,
the overhead from multi-threaded on such a brief program
renders threading irrelevant. Moreover, the EQREL version
outperforms the explicit version even on the 5000 input run,
despite little implicit information is gained. An exception to
this is the 32 thread 5000 run, wherein both run times spike
due to hyper-threading artefacts.

Comparison to other systems: SOUFFLÉ is an open
source, parallelizing compiler, whilst competing Datalog
engines are either sequential and/or closed source. For
this reason, SOUFFLÉ was the most suitable candidate for
implementing the EQREL data structure. However, we would
expect similar asymptotic speedups if EQREL techniques
were integrated into other bottom-up Datalog engines. Due
to the performance disparity on large benchmarks (see
experimental evaluation in e.g., [21], [22]), we compare
against other engines (BDDBDDB [23] and LogicBlox [24])
using smaller datasets (10k Bitcoin transactions, and a
Steensgaard analysis on only the java.lang.String subset),
thus establishing SOUFFLÉ as a fair baseline. A comparison
is shown in Table II.

As observed in Table II, there are multiple orders of



Size PubKeys Transactions Classes Singletons Largest Class Mean Size Same User Pairs
5000 4685 4117 3803 3303 11 1.23 7947
100000 76129 54555 43335 38185 2768 1.76 13351193
5000000 3442156 2737910 1776519 1469558 61384 1.94 12096911888

Table I: Statistics of the input data set

Engine Bitcoin (10k Tx) Steensgaard (small)
Souffle(eqrel) 32ms 2.6ms
Souffle(explicit) 57ms 910ms
BDDBDDB 2.29s 1.56s
LogicBlox 2.58s 9.17s

Table II: Performance difference between Datalog engines

magnitudes in difference in runtime between performance
in SOUFFLÉ EQREL and other engines. When comparing
to handwritten code, as far as we are aware of, there
is no parallel Steensgard’s alias analysis available in a
production compiler. We conducted an initial experiment
with LLVM/Seahorn [25] that contains a sequential Steens-
gaard’s analysis. We used a benchmark with 62 KLOCs that
translated to ≈20K nodes. The analysis took in total 11s
where 0.94s was spent on the construction of the equivalence
relation. In contrast, our OpenJDK benchmark with ≈47K
nodes (see Figure 13) ran in 0.099s - just under ≈10x faster.
These real-world Datalog benchmarks substantiate Claims
II and III, demonstrating the superior scalability of EQREL
compared to an explicit representation. We observe runtime
speed-ups of up to 5.4 orders of magnitude, and a memory
usage improvement of up to 2.4 orders of magnitude for these
real-world use cases. Furthermore, in these Datalog programs,
there are no situations where the EQREL is outperformed by
an explicit representation.

V. RELATED WORK

Data Structures for Datalog: Previous Datalog im-
plementations have focused on relational data structures
including binary decision diagrams [26], Hashsets e.g.,
[27], [28] and B-trees e.g., [29], [1]. While our experience
is that B-trees (as implemented in Logicblox ver. 3 and
SOUFFLÉ [1]) have shown to be the most scalable for large
ruleset/dataset benchmarks [8], [22], certain use cases may
benefit heavily from a more specialized data structure taking
into account certain properties of the particular use case. For
instance, a Brie data structure introduced in [9] demonstrates
significant benefits for highly dense data. For must-alias
program analysis, [12] introduces both an engine-level and a
Datalog-level implementation of a specialized data structure
approximating must-alias relations. The EQREL data structure
presented in this paper is designed to facilitate efficient
storage and processing of equivalence relations.

Special Handling of Equivalences: In the area of
semantic web, equivalence relations are also prevalent in

certain datasets. For example, with the OWL 2 RL language,
the sameAs relation is a congruence, which subsumes
an equivalence relation. Therefore, specialized handling of
owl:sameAs has been developed [30], [31], [32], using
union-find data structures to store relationships between
objects. For Datalog, [33] presents a modular framework
for Datalog evaluation, allowing to plug in a specialized
equivalence relation evaluation algorithm with a focus
on incremental evaluation. However, their approach does
not introduce new data structures, and no memory usage
improvements are possible.

Parallel Datalog Engines: There has been a multitude of
parallelization efforts of Datalog in the past [34], [35], [36],
[37], [38], [39], [40] mainly focusing on rewriting techniques
and top-down evaluations. Recently, a number of state-of-the-
art engines have employed fine-grain parallelism to bottom-
up evaluation schemes. In [2] uses an in-memory parallel
evaluation of Datalog programs on shared-memory multi-core
machines. Datalog-MC hash-partitions tables and executes
the partitions on cores of a shared-memory multi-core system
using a variant of hash-join. To evaluate Datalog in parallel,
rules are represented as and-or trees that are compiled to
Java. Logicblox version 4, uses persistent functional data
structures that avoid the need for synchronization by virtue of
their immutability, where insertions efficiently replicate state
via the persistent data structure. A particular performance-
focused approach has been proposed by Martınez-Angeles et
al. who implemented a Datalog engine running on GPUs [41].
Their basic data structure is an array of tuples, allowing for
duplicates. Thus, after every relational operation, explicit
duplicate elimination is performed, which for some cases
vastly dominates execution time. Also, the potentially high
number of duplicates occurring in temporary results quickly
exceeded the memory budget on GPUs. The applicability of
this approach has only been demonstrated for small Datalog
queries. We point the reader to [15], [21] for performance
comparisons between engines on large ruleset/dataset bench-
marks.

VI. CONCLUSION

We have presented the design, implementation, and evalua-
tion of a novel concurrent equivalence relation data structure
for Datalog. We have proposed a three-layered data structure
architecture that provides both seamless integration in Datalog
engines such as SOUFFLÉ and the performance to scale to
industrial sized applications.
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A. Artifact Appendix
A.1 Abstract
This artifact contains the benchmarking suite for the paper
Fast Equivalence Relations in Datalog. This paper presents a
new equivalence relation data structure designed for efficient
Datalog evaluation.

The format of these benchmarks is to reproduce our re-
sults in the form of raw timing/measurement data, and com-
piling these into the same graphs as are available within the
final paper, for comparison.

A.2 Artifact check-list (meta-information)
• Algorithm: Extension of semi-naı̈ve evaluation to accomodate

implicit information

• Data set: OpenJDK, Bitcoin (both open-source and included)

• Run-time environment: Linux

• Hardware: 32GB RAM, 32 threads, AMD64

• Execution: Full suite takes ≈16 hours

• Metrics: Runtime and memory usage

• Output: CSV raw data, PDF graphs

• Experiments: Run via provided shell scripts, with variations
in execution time dependent on CPU/RAM speeds.

• How much disk space required (approximately): 2GB

• How much time is needed to prepare workflow (approxi-
mately): 15 minutes (depending on internet speed)

• How much time is needed to complete experiments (approx-
imately): 16 hours

• Publicly available: Yes

• Code licenses (if publicly available): Universal Permissive
License (UPL)

• Data licenses (if publicly available): UPL

• Workflow framework used: Docker, shell scripts, Python

• Archived: DOI: 10.5281/zenodo.3346193

A.3 Description
A.3.1 How delivered
This artifact is available either as a prebuilt Docker image on
the Dockerhub repository, or a Dockerless version is available for
download from Zenodo (https://doi.org/10.5281/zenodo.3346193).

Refer to section A.4 for instructions on how to install/manage
the experiments.

A.3.2 Hardware dependencies
In order to run the experiments as is, 32GB of RAM and 32 CPU
threads are required. These are enforced in the several scripts that
are provided. Refer to A.7 in how to remove these, and modifying
the number of threads.

A.3.3 Software dependencies
Docker, or a Debian-based system if you wish to build without
Docker - refer to A.4 for installation instructions.

A.3.4 Data sets
All data sets are included in the Docker image and the Dockerless
version.

A.4 Installation
The easiest way to run is with Docker, where we have prebuilt
all requirements necessary for Soufflé, and our benchmark suite.
Otherwise, we also have a section which describes setting up for a
non-Docker environment.

In order to run these experiments, you must run on a machine
with at least 32GB of RAM, in addition to at least 32 threads.

These experiments are built using version 1.5.1 of the Souffle
Datalog compiler, source code available at https://github.com/souffle-
lang/souffle.

A.4.1 Docker installation
Fetch the image from Dockerhub - this is around 1.5 GB in size.

docker pull pnappa/pact2019_eqrel

Start and enter the container.

sudo docker container run -it \

pnappa/pact2019_eqrel /bin/bash

You may now start running the experiments, refer to A.5 for
instructions. Make sure that after running the experiments, you
keep your shell open.

A.4.2 Dockerless
This requires a Debian-based system (tested on Ubuntu LTS
18.04.2).

Download the archive from https://doi.org/10.5281/zenodo.3346193,
and extract to find all the relevant files.

Install souffle (version 1.5.1):

sudo apt install ./souffle_1.5.1-1_amd64.deb

As we render using Latex, you’ll need to install the following:

sudo apt install texlive-base latexmk dvipng \

texlive-latex-extra time python3-pip

Install python3. You’ll also need matplotlib to graph.

pip3 install matplotlib

A.5 Experiment workflow
Each experiment is run by a runner.sh script, which handles
compilation of C++ code, executing the actual benchmarks, and
generating result PDFs.

Note, for sake of runtime, these experiments are only run once,
in the paper we repeated the experiments 10 times. If you wish to
increase the number of repeats, modify the repetitions variable
in each of the runner.sh scripts for each of the following experi-
ments.

A.5.1 Microbenchmarks
In this benchmark we evaluate the performance of EQREL, com-
paring the execution time of the two most important operations in
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#!/bin/bash

# name of the running docker instance

instancename=$(docker ps | grep "pact2019_eqrel" | awk '{print $10}' | head -n 1)

# copy microbenchmark files back

docker cp "$instancename:/artifact/microbenchmarks/pairinsertionsingletime.pdf" .

docker cp "$instancename:/artifact/microbenchmarks/pairinsertionsinglemem.pdf" .

docker cp "$instancename:/artifact/microbenchmarks/pairiterationsingletime.pdf" .

# copy bitcoin files back

docker cp "$instancename:/artifact/bitcoin_same_user/bitcoingraphmem.pdf" .

docker cp "$instancename:/artifact/bitcoin_same_user/bitcoingraph.pdf" .

# copy openjdk analysis files back

docker cp "$instancename:/artifact/openjdk_javalang_steensgaard/jdkgraph.pdf" .

docker cp "$instancename:/artifact/openjdk_javalang_steensgaard/jdkgraphmem.pdf" .

Figure 1. Bash script to extract generated PDF graphs from Docker image

SOUFFLÉ- insertion and iteration. We compare the performance
with a state-of-the-art B-tree implementation which stores the
equivalence relation explicitly.

To run, cd into the microbenchmarks directory and run:
./runner.sh

This will take approximately 40 minutes to complete.
The resulting graphs will be generating using the python script

launched as part of runner.sh, and will emit three PDFs:

• pairinsertionsingletime.pdf which graphs the runtime
(excluding IO) for explicit and eqrel insertions for varying
domain types, and input sizes.

• pairinsertionsinglemem.pdf graphs the memory usage of
the above experiment.

• pairiterationsingletime.pdf graphs the iteration time
over the domain types versus the input sizes.

A.5.2 Bitcoin Same-User Analysis
In this benchmark, we run a Datalog program that performs a user
analysis on a fragment of the Bitcoin blockchain. We compare
EQREL with an explicit representation, over varying number of
threads, and input sizes (subsets of the blockchain).

To run, cd into the bitcoin_same_user directory, and run:
./runner.sh

It will take around 45 minutes to complete.
The resulting graphs will be generating using the python script

launched as part of runner.sh, and will emit two PDFs:

• bitcoingraph.pdf which graphs the runtime (excluding IO)
for explicit and eqrel representations over varying input sizes of
blockchain transactions

• bitcoingraphmem.pdf graphs the memory usage of the above
experiment.

A.5.3 OpenJDK Steensgaard Points-to Analysis
This runs an experiment over the java.lang.* subset of the Open-
JDK, whose fact files are generated using a proprietary Oracle Labs

tool. We perform several Steensgaard points-to analyses on this lan-
guage subset; EQREL, an explicit equivalence relation version, and
a non-symmetric version.

To run, cd into the openjdk_lang_steensgaard directory and
run:

./runner.sh

It will take around 16 hours to complete.
The resulting graphs that will be emitted as part of runner.sh

are:

• jdkgraph.pdf graphs the solving time (and size calculation)
of the analysis vs the number of threads for a variety of Datalog
programs.

• jdkgraphmem.pdf graphs the memory consumption of the
above experiment.

A.6 Evaluation and expected result
The artifact as a whole generates several PDF graphs based on the
results from running the experiments. Follow the instructions in A.5
to completion, and keep the Docker container running.

In order to extract the PDF files from the container once the
experiments have finished running, you may use the following
script. Save the following script described in Figure 1, and run as a
superuser (e.g. sudo bash ./download.sh):

The resulting graphs should reproduce the relevant results in the
paper, demonstrating a quadratic speed up for larger equivalence
class datasets (Bitcoin, OpenJDK).

A.7 Experiment customization
One is able to modify the runner.sh and grapher.py scripts
to modify the number of threads and size of the inputs that are
consumed.

To modify the number of threads used, the threads variable in
runner.sh, and the threads variable in grapher.py should be
modified.

To modify the size of inputs, the arguments to run_program in
runner.sh, and the counties variable in grapher.py should be
modified.
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