
Scalable Typestate Analysis for Low-Latency
Environments

Alen Arslanagić1, Pavle Subotić2, and Jorge A. Pérez1

1 University of Groningen, The Netherlands
2 Microsoft, Serbia

Abstract. Static analyses based on typestates are important in certifying
correctness of code contracts. Such analyses rely on Deterministic Finite
Automata (DFAs) to specify properties of an object. We target the analysis
of contracts in low-latency environments, where many useful contracts are
impractical to codify as DFAs and/or the size of their associated DFAs
leads to sub-par performance. To address this bottleneck, we present
a lightweight typestate analyzer, based on an expressive specification
language that can succinctly specify code contracts. By implementing it
in the static analyzer Infer, we demonstrate considerable performance
and usability benefits when compared to existing techniques. A central
insight is to rely on a sub-class of DFAs with efficient bit-vector operations.

1 Introduction

Industrial-scale software is generally composed of multiple interacting components,
which are typically produced separately. As a result, software integration is a
major source of bugs [18]. Many integration bugs can be attributed to violations
of code contracts. Because these contracts are implicit and informal in nature, the
resulting bugs are particularly insidious. To address this problem, formal code
contracts are an effective solution [12], because static analyzers can automatically
check whether client code adheres to ascribed contracts.

Typestate is a fundamental concept in ensuring the correct use of contracts
and APIs. A typestate refines the concept of a type: whereas a type denotes
the valid operations on an object, a typestate denotes operations valid on an
object in its current program context [20]. Typestate analysis is a technique used
to enforce temporal code contracts. In object-oriented programs, where objects
change state over time, typestates denote the valid sequences of method calls
for a given object. The behavior of the object is prescribed by the collection of
typestates, and each method call can potentially change the object’s typestate.

Given this, it is natural for static typestate checkers, such as Fugue [9],
SAFE [23], and Infer’s Topl checker [2], to define the analysis property using
Deterministic Finite Automata (DFAs). The abstract domain of the analysis is a
set of states in the DFA; each operation on the object modifies the set of possible
reachable states. If the set of abstract states contains an error state, then the
analyzer warns the user that a code contract may be violated. Widely applicable
and conceptually simple, DFAs are the de facto model in typestate analyses.

https://eapls.org/pages/artifact_badges/
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Here we target the analysis of realistic code contracts in low-latency envi-
ronments such as, e.g., Integrated Development Environments (IDEs) [22,21]. In
this context, to avoid noticeable disruptions in the users’ workflow, the analysis
should ideally run under a second [1]. However, relying on DFAs jeopardizes this
goal, as it can lead to scalability issues. Consider, e.g., a class with n methods
in which each method enables another one and then disables itself: the contract
can lead to a DFA with 2n states. Even with a small n, such a contract can be
impractical to codify manually and will likely result in sub-par performance.

Interestingly, many practical contracts do not require a full DFA. In our
enable/disable example, the method dependencies are local to a subset of methods:
a enabling/disabling relation is established between pairs of methods. DFA-based
approaches have a whole class expressivity; as a result, local method dependencies
can impact transitions of unrelated methods. Thus, using DFAs for contracts
that specify dependencies that are local to each method (or to a few methods) is
redundant and/or prone to inefficient implementations. Based on this observation,
we present a lightweight typestate analyzer for locally dependent code contracts
in low-latency environments. It rests upon two insights:

1. Allowed and disallowed sequences of method calls for objects can be succinctly
specified without using DFAs. To unburden the task of specifying typestates,
we introduce lightweight annotations to specify method dependencies as
annotations on methods. Lightweight annotations can specify code contracts
for usage scenarios commonly encountered when using libraries such as File,
Stream, Socket, etc. in considerably fewer lines of code than DFAs.

2. A sub-class of DFAs suffices to express many useful code contracts. To
give semantics to lightweight annotations, we define Bit-Vector Finite Au-
tomata (BFAs): a sub-class of DFAs whose analysis uses bit-vector operations.
In many practical scenarios, BFAs suffice to capture information about the
enabled and disabled methods at a given point. Because this information can
be codified using bit-vectors, associated static analyses can be performed
efficiently; in particular, our technique is not sensitive to the number of BFA
states, which in turn ensures scalability with contract and program size.

We have implemented our lightweight typestate analysis in the industrial-strength
static analyzer Infer [7]. Our analysis exhibits concrete usability and performance
advantages and is expressive enough to encode many relevant typestate properties
in the literature. On average, compared to state-of-the-art typestate analyses,
our approach requires less annotations than DFA-based analyzers and does not
exhibit slow-downs due to state increase. We summarise our contributions as
follows:

– A specification language for typestates based on lightweight annotations (§2).
Our language rests upon BFAs, a new sub-class of DFA based on bit-vectors.

– A lightweight analysis technique for code contracts, implemented in Infer
(our artifact is available at [4]).3

3 Our code is available at https://github.com/aalen9/lfa.git

https://github.com/aalen9/lfa.git
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– Extensive evaluations for our lightweight analysis technique, which demon-
strate considerable gains in performance and usability (§4).

2 Bit-vector Typestate Analysis

2.1 Annotation Language

We introduce BFA specifications, which succinctly encode temporal properties
by only describing local method dependencies, thus avoiding an explicit DFA
specification. BFA specifications define code contracts by using atomic combina-
tions of annotations ‘@Enable(n)’ and ‘@Disable(n)’, where n is a set of method
names. Intuitively, ‘@Enable(n) m’ asserts that invoking method m makes calling
methods in n valid in a continuation. Dually, ‘@Disable(n) m’ asserts that a call
to m disables calls to all methods in n in the continuation. More concretely, we
give semantics for BFA annotations by defining valid method sequences:

Definition 1 (Annotation Language). Let C = {m0, . . . ,mn} be a set of
method names where each mi ∈ C is annotated by

@Enable(Ei) @Disable(Di) mi

where Ei ⊆ C, Di ⊆ C, and Ei ∩Di = ∅. Further, we have E0 ∪D0 = C. Let
s = x0, x1, x2, . . . be a method sequence where each xi ∈ C. A sequence s is valid
(w.r.t. annotations) if there is no substring s′ = xi, . . . , xk of s such that xk ∈ Di

and xk 6∈ Ej, for j ∈ {i+ 1, . . . , k}.

The formal semantics for these specifications is given in § 2.2. We note, if Ei or
Di is ∅ then we omit the corresponding annotation. Moreover, the BFA language
can be used to derive other useful annotations defined as follows:

@EnableOnly(Ei) mi
def
= @Enable(Ei) @Disable(C \ Ei) mi

@DisableOnly(Di) mi
def
= @Disable(Di) @Enable(C \ Ei) mi

@EnableAll mi
def
= @Enable(C) mi

This way, ‘@EnableOnly(Ei)mi’ asserts that a call to methodmi enables only calls
to methods in Ei while disabling all other methods in C; ‘@DisableOnly(Di) mi’
is defined dually. Finally, ‘@EnableAll mi’ asserts that a call to method mi

enables all methods in a class; ‘@DisableAll mi’ can be defined dually.
To illustrate the expressivity and usability of BFA annotations, we consider the

SparseLU class from Eigen C++ library4. For brevity, we consider representative
methods for a typestate specification (we also omit return types):

1 class SparseLU {
2 void analyzePattern(Mat a);
3 void factorize(Mat a);
4 void compute(Mat a);
5 void solve(Mat b); }

4 https://eigen.tuxfamily.org/dox/classEigen_1_1SparseLU.html

https://eigen.tuxfamily.org/dox/classEigen_1_1SparseLU.html
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1 class SparseLU {
2 states q0, q1, q2 , q3;
3 @Pre(q0) @Post(q1)
4 @Pre(q3) @Post(q1)
5 void analyzePattern(Mat a);
6 @Pre(q1) @Post(q2)
7 @Pre(q3) @Post(q2)
8 void factorize(Mat a);
9 @Pre(q0) @Post(q2)

10 @Pre(q3) @Post(q2)
11 void compute(Mat a);
12 @Pre(q2) @Post(q3)
13 @Pre(q3)
14 void solve(Mat b); }

Listing (1.1) SparseLU DFA Contract

class SparseLU {

@EnableOnly(factorize)
void analyzePattern(Mat a);

@EnableOnly(solve)
void factorize(Mat a);

@EnableOnly(solve)
void compute(Mat a);

@EnableAll
void solve(Mat b); }

Listing (1.2) SparseLU BFA Contract

q0start q1

q2 q3

aP

factorize
compute

solve

compute, factorize

aP

solve

Fig. 2: SparseLU DFA
The SparseLU class implements a lower-upper (LU) decomposition of a sparse
matrix. Eigen’s implementation uses assertions to dynamically check that: (i)
analyzePattern is called prior to factorize and (ii) factorize or compute
are called prior to solve. At a high-level, this contract tells us that compute (or
analyzePattern().factorize()) prepares resources for invoking solve.

We notice that there are method call sequences that do not cause errors,
but have redundant computations. For example, we can disallow consecutive
calls to compute as in, e.g., sequences like ‘compute().compute().solve()’ as
the result of the first compute is never used. Further, compute is essentially
implemented as ‘analyzePattern().factorize()’. Thus, it is also redundant to
call factorize after compute. The DFA that substitutes dynamic checks and
avoids redundancies is given in Figure 2. Following the literature [9], this DFA
can be annotated inside a class definition as in Listing 1.1. Here states are listed
in the class header and transitions are specified by @Pre and @Post conditions
on methods. However, this specification is too low-level and unreasonable for
software engineers to annotate their APIs with, due to high annotation overheads.

In contrast, using BFA annotations the entire SparseLU class contract can
be succinctly specified as in Listing 1.2. Here, the starting state is unspecified;
it is determined by annotations. In fact, methods that are not guarded by
other methods (like solve is guarded by compute) are enabled in the starting
state. Concretely, methods are guarded if they are enabled by some method and
not disabled by any other method. We remark that this can be overloaded by
specifying annotations on the constructor method. We can specify the contract
with only 4 annotations; the corresponding DFA requires 8 annotations and
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4 states specified in the class header. We remark that a small change in local
method dependencies by BFA annotations can result in a substantial change of
the equivalent DFA. Let {m1,m2,m3, . . . ,mn} be methods of some class with
DFA associated (with states Q) in which m1 and m2 are enabled in each state
of Q. Adding @Enable(m2) m1 doubles the number of states of the DFA as we
need the set of states Q where m2 is enabled in each state, but also states from
Q with m2 disabled in each state. Accordingly, transitions have to be duplicated
for the new states and the remaining methods (m3, . . . ,mn).

2.2 Bit-vector Finite Automata

We define a class of DFAs, dubbed Bit-vector Finite Automata (BFA), that cap-
tures enabling/disabling dependencies between the methods of a class leveraging
a bit-vector abstraction on typestates.

Definition 2 (Sets and Bit-vectors). Let Bn denote the set of bit-vectors of
length n > 0. We write b, b′, . . . to denote elements of Bn, with b[i] denoting the
i-th bit in b. Given a finite set S with |S| = n, every A ⊆ S can be represented by
a bit-vector bA ∈ Bn, obtained via the usual characteristic function. By a small
abuse of notation, given sets A,A′ ⊆ S, we may write A ⊆ A′ to denote the
subset operation applied on bA and bA′ (and similarly for ∪,∩).

We first define a BFA per class. Let us write C to denote the finite set of all classes
c, c′, . . . under consideration. Given a c ∈ C with n methods, and assuming a
total order on method names, we represent them by the set Σc = {m1, . . . ,mn}.

A BFA for a class with n methods considers states qb, where, following Def. 2,
the bit-vector bA ∈ Bn denotes the set A ⊆ Σc enabled at that point. We often
write ‘b’ (and qb) rather than ‘bA’ (and ‘qbA ’), for simplicity. As we will see, the
intent is that if mi ∈ b (resp. mi 6∈ b), then the i-th method is enabled (resp.
disabled) in qb. Def. 3 will give a mapping from methods to triples of bit-vectors.

Given k > 0, let us write 1k (resp. 0k) to denote a sequence of 1s (resp. 0s) of
length k. The initial state of the BFA is then q10n−1 , i.e., the state in which only
the first method is enabled and all the other n− 1 methods are disabled.

Given a class c, we define its associated mapping Lc as follows:

Definition 3 (Mapping Lc). Given a class c, we define Lc as a mapping from
methods to triples of subsets of Σc as follows

Lc : Σc → P(Σc)× P(Σc)× P(Σc)

Given mi ∈ Σc, we shall write Ei, Di and Pi to denote each of the elements of
the triple Lc(mi). The mapping Lc is induced by the annotations in class c: for
each mi, the sets Ei and Di are explicit, and Pi is simply the singleton {mi}.

In an BFA, transitions between states qb, qb′ , · · · are determined by Lc. Given
mi ∈ Σc, we have j ∈ Ei if and only if the mi enables mj ; similarly, k ∈ Di if and
only if mi disables mk. A transition from qb labeled by method mi leads to state
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qb′ , where b′ is determined by Lc using b. Such a transition is defined only if a
pre-condition for mi is met in state qb, i.e., P ⊆ b. In that case, b′ = (b∪Ei) \Di.

These intuitions should suffice to illustrate our approach and, in particular,
the local nature of enabling and disabling dependencies between methods. The
following definition makes them precise.

Definition 4 (BFA). Given a c ∈ C with n > 0 methods, a Bit-vector Finite
Automaton (BFA) for c is defined as a tuple M = (Q,Σc, δ, q10n−1 ,Lc) where:

– Q is a finite set of states q10n−1 , qb, qb′ , . . ., where b, b′, . . . ∈ Bn;
– q10n−1 is the initial state;
– Σc = {m1, . . . ,mn} is the alphabet (method identities);
– Lc is a BFA mapping (cf. Def. 3);
– δ : Q × Σc → Q is the transition function, where δ(qb,mi) = qb′ (with
b′ = (b ∪ Ei) \Di) if Pi ⊆ b, and is undefined otherwise.

We remark that in a BFA all states in Q are accepting states.

Example 1 (SparseLU). We give the BFA derived from the annotations in the
SparseLU example (Listing 1.2). We associate indices to methods:

[0 : constructor , 1 : aP , 2 : compute, 3 : factorize, 4 : solve]

The constructor annotations are implicit: it enables methods that are not guarded
by annotations on other methods (in this case, aP and compute). The mapping
LSparseLU is as follows:

LSparseLU = {0 7→ ({1, 2}, {}, {0}), 1 7→ ({3}, {1, 2, 4}, {1}),
2 7→ ({4}, {1, 2, 3}, {2}), 3 7→ ({4}, {1, 2, 3}, {3}), 4 7→ ({1, 2, 3}, {}, {4})}

The set of states isQ = {q1000, q1100, q0010, q0001, q1111} and the transition function
δ is given by following nine transitions:

δ(q1000, constr) = q1100 δ(q1100, aP) = q0010 δ(q1100, compute) = q0010
δ(q0010, factorize) = q0001 δ(q0001, solve) = q1111 δ(q1111, aP) = q0010
δ(q1111, compute) = q0001 δ(q1111, factorize) = q0001 δ(q1111, solve) = q1111

BFAs vs DFAs First, we need define some convenient notations:

Definition 5 (Method sequences and concatenation). We use m̃ to denote
a finite sequence of method names in Σ. Further, we use ‘·’ to denote sequence
concatenation, defined as expected.

In the following theorem, we use δ̂(qb, m̃) to denote the extension of the one-
step transition function δ(qb,mi) to a sequence of method calls (i.e., m̃). BFAs
determine a strict sub-class of DFAs. First, because all states in Q are accepting
states, BFA cannot encode the “must call” property (cf. § 5). Next, we define the
context-independency property, satisfied by all BFAs but not by all DFAs:
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Theorem 1 (Context-independency). Let M = (Q,Σc, δ, q10n−1 ,Lc) be a
BFA. Also, let L = {m̃ : δ̂(q10n−1 , m̃) = q′ ∧ q′ ∈ Q} be the language accepted by
M . Then, for mn ∈ Σc we have

1. If there is p̃ ∈ L and mn+1 ∈ Σc s.t. p̃ ·mn+1 /∈ L and p̃ ·mn ·mn+1 ∈ L
then there is no m̃ ∈ L s.t. m̃ ·mn ·mn+1 /∈ L.

2. If there is p̃ ∈ L and mn+1 ∈ Σc s.t. p̃ ·mn+1 ∈ L and p̃ ·mn ·mn+1 /∈ L
then there is no m̃ ∈ L s.t. m̃ ·mn ·mn+1 ∈ L.

Proof. Directly by Def. 4. See [3] for details.

Informally, the above theorem tells that previous calls (m̃) (i.e., context)
cannot impact the effect of a call to mn to subsequent calls (mn+1). That is,
Item 1. (resp. Item 2.) tells that method mn enables (resp. disables) the same
set of methods in any context. For example, a DFA that disallows modifying
a collection while iterating is not a BFA (as in Fig. 3 in [5]). Let it be a Java
Iterator with its usual methods for collection c. For the illustration, we as-
sume a single DFA relates the iterator and its collection methods. Then, the
sequence ‘it.hasNext;it.next;c.remove;it.hasNext’ should not be allowed,
although ‘c.remove;it.hasNext’ should be allowed. That is, c.remove disables
it.hasNext only if it.hasNext is previously called. Thus, the effect of calling
c.remove depends on the calls that precedes it.
BFA subsumption Using BFAs, checking class subsumption boils down to usual
set inclusion. Suppose M1 and M2 are BFAs for classes c1 and c2, with c2 being
the superclass of c1. The class inheritance imposes an important question on how
we check that c1 is a proper refinement of c2. In other words, c1 must subsume
c2: any valid sequence of calls to methods of c2 must also be valid for c1. Using
BFAs, we can verify this simply by checking annotations method-wise. We can
check whether M2 subsumes M1 only by considering their respective annotation
mappings Lc2 and Lc1 . Then, we have M2 � M1 iff for all mj ∈ Lc1 we have
E1 ⊆ E2, D1 ⊇ D2, and P1 ⊆ P2 where 〈Ei, Di, Pi〉 = Lci(mj) for i ∈ {1, 2}.

3 Compositional Analysis Algorithm

Since BFAs can be ultimately encoded as bit-vectors, for the non-compositional
case e.g., intra-procedural, standard data-flow analysis frameworks can be em-
ployed [15]. However, in the case of member objects methods being called, we
present a compositional algorithm that is tailored for the Infer compositional
static analysis framework. We motivate our compositional analysis technique
with the example below.

Example 2. Let Foo be a class that has member lu of class SparseLU (cf. List-
ing 1.3). For each method of Foo that invokes methods on lu we compute a
symbolic summary that denotes the effect of executing that method on typestates
of lu. To check against client code, a summary gives us: (i) a pre-condition (i.e.,
which methods should be allowed before calling a procedure) and (ii) the effect
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1 class Foo {
2 SparseLU lu; Matrix a;
3 void setupLU1(Matrix b) {
4 this.lu.compute(this.a);
5 if (?) this.lu.solve(b); }
6 void setupLU2 () {
7 this.lu.analyzePattern(this.a);
8 this.lu.factorize(this.a); }
9 void solve(Matrix b) {

10 this.lu.solve(b); } }

Listing (1.3) Class Foo using SparseLU

void wrongUseFoo () {
Foo foo; Matrix b;
foo.setupLU1 ();
foo.setupLU2 ();
foo.solve(b);

}

Listing (1.4) Client code for Foo

on the typestate of an argument when returning from the procedure. A simple
instance of a client is wrongUseFoo in Listing 1.4.

The central idea of our analysis is to accumulate enabling and disabling
annotations. For this, the abstract domain maps object access paths to triplets
from the definition of LSparseLU. A transfer function interprets method calls in
this abstract state. We illustrate the transfer function, presenting how abstract
state evolves as comments in the following code listing.

1 void setupLU1(Matrix b) {
2 // s1 = this.lu -> ({}, {}, {})
3 this.lu.compute(this.a);
4 // s2 = this.lu -> ({ solve}, {aP, factorize , compute}, {compute })
5 if (?) this.lu.solve(b); }
6 // s3 = this.lu -> ({solve , aP, factorize , compute}, {}, {compute })
7 // join s2 s3 = s4
8 // s4 = sum1 = this.lu -> ({solve}, {aP, factorize , compute}, {compute })

At the procedure entry (line 2) we initialize the abstract state as a triplet with
empty sets (s1). Next, the abstract state is updated at the invocation of compute
(line 3): we copy the corresponding tuple from LSparseLU(compute) to obtain s2
(line 4). Notice that compute is in the pre-condition set of s2. Further, given the
invocation of solve within the if-branch in line 5 we transfer s2 to s3 as follows:
the enabling set of s3 is the union of the enabling set from LSparseLU(solve)
and the enabling set of s2 with the disabling set from LSparseLU(solve) removed
(i.e., an empty set here). Dually, the disabling set of s3 is the union of the
disabling set of LSparseLU(solve) and the disabling set of s1 with the enabling
set of LSparseLU(solve) removed. Here we do not have to add solve to the pre-
condition set, as it is in the enabling set of s2. Finally, we join the abstract states
of two branches at line 7 (i.e., s2 and s3). Intuitively, join operates as follows: (i) a
method is enabled only if it is enabled in both branches and not disabled in any
branch; (ii) a method is disabled if it is disabled in either branch; (iii) a method
called in either branch must be in the pre-condition (cf. Def. 6). Accordingly, in
line 8 we obtain the final state s4 which is also a summary for SetupLU1.
Now, we illustrate checking client code wrongUseFoo() with computed summaries:

1 void wrongUseFoo () {
2 Foo foo; Matrix b;
3 // d1 = foo.lu -> ({aP, compute}, {solve , factorize}, {})
4 foo.setupLU1 (); // apply sum1 to d1
5 // d2 = foo.lu -> ({solve}, {aP , factorize , compute}, {})
6 foo.setupLU2 (); // apply sum2 = {this.lu -> ({solve}, {aP , factorize ,

compute}, {aP}) }
7 // warning! ‘analyzePattern ’ is in pre of sum2 , but not enabled in d2
8 foo.solve(b); }
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Above, at line 2 the abstract state is initialized with annotations of constructor
Foo. At the invocation of setupLU1() (line 4) we apply sum1 in the same way
as user-entered annotations are applied to transfer s2 to s3 above. Next, at line 6
we can see that aP is in the pre-condition set in the summary for setupLU2()
(sum2), computed similarly as sum1, but not in the enabling set of the current
abstract state d2. Thus, a warning is raised: foo.lu set up by foo.setupLU1()
is never used and overridden by foo.setupLU2().
Class Composition In the above example, the allowed orderings of method
calls to an object of class Foo are imposed by the contracts of its object members
(SparseLU) and the implementation of its methods. In practice, a class can have
multiple members with their own BFA contracts. For instance, class Bar can use
two solvers SparseLU and SparseQR:

1 class Bar {
2 SparseLU lu; SparseQR qr; /* ... */ }

where class SparseQR has its own BFA contract. The implicit contract of Bar
depends on contracts of both lu and qr. Moreover, a class as Bar can be a
member of some other class. Thus, we refer to those classes as composed and to
classes that have declared contracts (as SparseLU) as base classes.

Integrating Aliasing Now, we discuss how aliasing information can be inte-
grated with our technique. In Ex. 2 member lu of object foo can be aliased.
Thus, we keep track of BFA triplets for all base members instead of constructing
an explicit BFA contract for a composed class (e.g., Foo). Further, we would need
to generalize an abstract state to a mapping of alias sets to BFA triplets. That
is, the elements of abstract state would be {a1, a2, . . . , an} 7→ 〈E,D,P 〉 where
{a1, a2, . . . , an} is a set of access paths. For example, when invoking method
setupLU1 we would need to apply its summary (sum1) to triplets of each alias
set that contains foo.lu as an element. Let d1 = {S1 7→ t1, S2 7→ t2, . . .} be
an abstract state where S1 and S2 are the only keys such that foo.lu ∈ Si for
i ∈ {1, 2} and t1 and t2 are some BFA triplets.

1 // d1 = S1 -> t1, S2 -> t2 , ...
2 foo.setupLU1 (); // apply sum1 = {this.lu -> t3}
3 // d2 = S1 -> apply t3 to t1, S2 -> apply t3 to t2, ...

Above, at line 2 we would need to update bindings of S1 and S2 (.resp) by
applying an BFA triplet for this.foo from sum1, that is t3, to t1 and t2 (.resp).
The resulting abstract state d2 is given at line 4. We remark that if a procedure
does not alter aliases, we can soundly compute and apply summaries, as shown
above.
Algorithm We formally define our analysis, which presupposes the control-flow
graph (CFG) of a program. Let us write AP to denote the set of access paths.
Access paths model heap locations as paths used to access them: a program
variable followed by a finite sequence of field accesses (e.g., foo.a.b). We use
access paths as we want to explicitly track states of class members. The abstract
domain, denoted D, maps access paths AP to BFA triplets:

D : AP →
⋃
c∈C

Cod(Lc)
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As variables denoted by an access path in AP can be of any declared class c ∈ C,
the co-domain of D is the union of codomains of Lc for all classes in a program.
We remark that D is sufficient for both checking and summary computation, as
we will show in the remaining of the section.

Definition 6 (Join Operator). We define
⊔

: Cod(Lc)×Cod(Lc)→ Cod(Lc)
as follows: 〈E1, D1, P1〉t〈E2, D2, P2〉 = 〈E1 ∩ E2\( D1∪D2), D1∪D2, P1∪ P2〉.

The join operator on Cod(Lc) is lifted to D by taking the union of un-matched
entries in the mapping.

The compositional analysis is given in Alg. 1. It expects a program’s CFG
and a series of contracts, expressed as BFAs annotation mappings (Def. 3). If the
program violates the BFA contracts, a warning is raised. For the sake of clarity
we only return a boolean indicating if a contract is violated (cf. Def. 8). In the
actual implementation we provide more elaborate error reporting. The algorithm
traverses the CFG nodes top-down. For each node v, it first collects information
from its predecessors (denoted by pred(v)) and joins them as σ (line 3). Then,
the algorithm checks whether a method can be called in the given abstract state
σ by predicate guard() (cf. Alg. 2). If the pre-condition is met, then the transfer()
function (cf. Alg. 3) is called on a node. We assume a collection of BFA contracts
(given as Lc1 , . . . ,Lck), which is input for Alg. 1, is accessible in Alg. 3 to avoid
explicit passing. Now, we define some useful functions and predicates. For the
algorithm, we require that the constructor disabling set is the complement of the
enabling set:

Definition 7 (well_formed(Lc)). Let c be a class, Σ methods set of class c,
and Lc. Then, well_formed(Lc) = true iff Lc(constr) = 〈E,Σ \ E,P 〉.

Definition 8 (warning(·)). Let G be a CFG and L1, . . . ,Lk be a collection
of BFAs. We define warning(G,L1, . . . ,Lk) = true if there is a path in G that
violates some of Li for i ∈ {1, . . . , k}.

Definition 9 (exit_node(·)). Let v be a method call node. Then, exit_node(v)
denotes exit node w of a method body corresponding to v.

Definition 10 (actual_arg(·)). Let v = Call − node[mj(p0 : b0, . . . , pn : bn)]
be a call node where p0, . . . , pn are formal and b0, . . . , bn are actual arguments
and let p ∈ AP. We define actual_arg(p, v) = bi if p = pi for i ∈ {0, . . . , n},
otherwise actual_arg(p, v) = p.

For convinience, we use dot notation to access elements of BFA triplets:

Definition 11 (Dot notation for BFA triplets). Let σ ∈ D and p ∈ AP.
Further, let σ[p] = 〈Eσ, Dσ, Pσ〉. Then, we have σ[p].E = Eσ, σ[p].D = Dσ, and
σ[p].P = Pσ.

Guard Predicate Predicate guard(v, σ) checks whether a pre-condition for
method call node v in the abstract state σ is met (cf. Alg. 2). We represent a call
node as mj(p0 : b0, . . . , pn : bn) where pi are formal and bi are actual arguments
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Algorithm 1: BFA Compositional Analysis
Data: G : A program’s CFG, a collection of BFA mappings: Lc1 , . . . ,Lck over

classes c1, . . . ck such that well_formed(Lci) for i ∈ {1, . . . , k}
Result: warning(G,Lc1 , . . . ,Lck )

1 Initialize NodeMap : Node→ D as an empty map;
2 foreach v in forward(G)) do
3 σ =

⊔
w∈pred(v) w;

4 if guard(v, σ) then NodeMap[v] := transfer(v,σ); else return True;
5 return False

Algorithm 2: Guard Predicate
Data: v : CFG node, σ : Domain
Result: False iff v is a method call that cannot be called in σ

1 Procedure guard (v, σ)
2 switch v do
3 case Call-node[mj(p0 : b0, . . . , pn : bn)] do
4 Let w = exit_node(v);
5 for i ∈ {0, . . . , n} do
6 if σw[pi].P ∩ σ[bi].D 6= ∅ then return False ;
7 return True
8 otherwise do
9 return True

(for i ∈ {0, . . . , n}). Let σw be a post-state of an exit node of method mj . The pre-
condition is met if for all bi there are no elements in their pre-condition set (i.e.,
the third element of σw[bi]) that are also in disabling set of the current abstract
state σ[bi]. For this predicate we need the property D = Σci \ E, where Σci is
a set of methods for class ci. This is ensured by condition well_formed(Lci)
(Def. 7) and by definition of transfer() (see below).
Transfer Function The transfer function is given in Alg. 3. It distinguishes
between two types of CFG nodes:

Entry-node: (lines 3–6) This is a function entry node. For simplicity we
represent it as mj(p0, . . . , pn) where mj is a method name and p0, . . . , pn are
formal arguments. We assume p0 is a reference to the receiver object (i.e., this).
If method mj is defined in class ci that has user-supplied annotations Lci , in
line 5 we initialize the domain to the singleton map (this mapped to Lci(mj)).
Otherwise, we return an empty map meaning that a summary has to be computed.

Call-node: (lines 7–20) We represent a call node as mj(p0 : b0, . . . , pn : bn)
where we assume actual arguments b0, . . . , bn are access paths for objects and
b0 represents a receiver object. The analysis is skipped if this is in the domain
(line 10): this means the method has user-entered annotations. Otherwise, we
transfer an abstract state for each argument bi, but also for each class member
whose state is updated by mj . Thus, we consider all access paths in the domain
of σw, that is ap ∈ dom(σw) (line 11). We construct access path ap′ given ap. We
distinguish two cases: ap denotes (i) a member and (ii) a formal argument of mj .
By line 12 we handle both cases as follows. In the former case we know ap has
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Algorithm 3: Transfer Function
Data: v : CFG node, σ : Domain
Result: Output abstract state σ′ : Domain

1 Procedure transfer (v, σ)
2 switch v do
3 case Entry-node[mj(p0, . . . , pn)] do
4 Let ci be the class of method mj(p0, . . . , pn);
5 if There is Lci then return {this 7→ Lci(mj)};
6 else return EmptyMap ;
7 case Call-node[mj(p0 : b0, . . . , pn : bn)] do
8 Let σw be an abstract state of exit_node(v);
9 Initialize σ′ := σ;

10 if this not in σ′ then
11 for ap in dom(σw) do
12 ap′ = actual_arg(ap{b0/this}, v);
13 if ap′ in dom(σ) then
14 E′ = (σ[ap′].E ∪ σw[ap].E) \ σw[ap].D;
15 D′ = (σ[ap′].D ∪ σw[ap].D) \ σw[ap].E;
16 P ′ = σ[ap′].P ∪ (σw[ap].P \ σ[ap′].E);
17 σ′[ap′] = 〈E′, D′, P ′〉;
18 else
19 σ′[ap′] := σw[ap];
20 return σ′

21 otherwise do
22 return σ

form this.c1. . . . .cn. Thus, we construct ap′ as ap with this substituted for b0
(actual_arg(·) is the identity in this case, see Def. 10): e.g., if receiver b0 is this.a
and ap is this.c1. . . . .cn then ap′ = this.a.c1. . . . .cn. In the latter case ap denotes
formal argument pi and actual_arg(·) returns corresponding actual argument bi.
Now, as ap′ is determined we construct its BFA triplet. If ap′ is not in the domain
of σ (line 13) we copy a corresponding BFA triplet from σw (line 19). Otherwise,
we transfer elements of an BFA triplet at σ[ap′] as follows. The resulting enabling
set is obtained by (i) adding methods that mj enables (σw[ap].E) to the current
enabling set σ[ap′].E, and (ii) removing methods that mj disables (σw[ap].D),
from it. The disabling set D′ is constructed in a complementary way. Finally, the
pre-condition set σ[ap′].P is expanded with elements of σw[ap].P that are not in
the enabling set σ[ap′].E. We remark that the property D = Σci \E is preserved
by the definition of E′ and D′. Transfer is the identity on σ for all other types of
CFG nodes. We can see that for each method call we have constant number of
bit-vector operations per argument. That is, BFA analysis is insensitive to the
number of states, as a set of states is abstracted as a single set.

Note, in our implementation we use several features specific to Infer: (1) In-
fer’s summaries which allow us to use a single domain for intra and inter
procedural analysis; (2) scheduling on CFG top-down traversal which simplify
the handling of branch statements. In principle, BFA can be implemented in other
frameworks e.g., IFDS [19].
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Correctness In a BFA, we can abstract a set of states by the intersection of
states in the set. That is, for P ⊆ Q all method call sequences accepted by each
state in P are also accepted by the state that is the intersection of bits of states in
the set. Theorem 2 formalizes this property. First we need an auxiliary definition;
let us write Cod(·) to denote the codomain of a mapping:

Definition 12 (J · K(·)). Let 〈E,D,P 〉 ∈ Cod(Lc) and b ∈ Bn. We define
J〈E,D,P 〉K(b) = b′ where b′ = (b ∪ E) \D if P ⊆ b, and is undefined otherwise.

Theorem 2 (BFA ∩-Property). Let M = (Q,Σc, δ, q10n−1 ,Lc), P ⊆ Q, and
b∗ =

⋂
qb∈P b, then

1. For m ∈ Σc, it holds: δ(qb,m) is defined for all qb ∈ P iff δ(qb∗ ,m) is defined.
2. Let σ = Lc(m). If P ′ = {δ(qb,m) : qb ∈ P} then

⋂
qb∈P ′ b = JσK(b∗).

Proof. By induction on cardinality of P and Def. 4. See [3] for details.

Our BFA-based algorithm (Alg. 1) interprets method call sequences in the
abstract state and joins them (using join from Def. 6) following the control-flow
of the program. Thus, we can prove its correctness by separately establishing:
(1) the correctness of the interpretation of call sequences using a declarative
representation of the transfer function (Def. 13) and (2) the soundness of join
operator (Def. 6). For brevity, we consider a single program object, as method
call sequences for distinct objects are analyzed independently. We define the
declarative transfer function as follows:

Definition 13 (dtransferc(·)). Let c ∈ C be a class, Σc be a set of methods of
c, and Lc be a BFA. Further, let m ∈ Σc be a method, 〈Em, Dm, Pm〉 = Lc(m),
and 〈E,D,P 〉 ∈ Cod(Lc). Then,

dtransferc(m, 〈E,D,P 〉) = 〈E′, D′, P ′〉

where E′ = (E ∪ Em) \Dm, D′ = (D ∪ Dm) \Em, and P ′ = P ∪ (Pm \ E),
if Pm ∩D = ∅, and is undefined otherwise. Let m1, . . . ,mn,mn+1 be a method
sequence and φ = 〈E,D,P 〉, then

dtransferc(m1, . . . ,mn,mn+1, φ) = dtransferc(mn+1, dtransferc(m1, . . . ,mn, φ))

Relying on Thm. 2, we state the soundness of join:

Theorem 3 (Soundness of t). Let qb ∈ Q and φi = 〈Ei, Di, Pi〉 for i ∈ {1, 2}.
Then, Jφ1K(b) ∩ Jφ2K(b) = Jφ1 t φ2K(b).
Proof. By definitions Def. 6 and Def. 12, and set laws. See [3] for details.

With these auxiliary notions in place, we show the correctness of the transfer
function (i.e., summary computation that is specialized for the code checking):
Theorem 4 (Correctness of dtransferc(·)). Let M = (Q,Σ, δ, q10n−1 ,Lc). Let
qb ∈ Q and m1 . . .mn ∈ Σ∗. Then

dtransferc(m1 . . .mn, 〈∅, ∅, ∅, 〉) = 〈E′, D′, P ′〉 ⇐⇒ δ̂(qb,m1 . . .mn) = qb′

where b′ = J〈E′, D′, P ′〉K(b).
Proof. By induction on the length of the method call sequence. See [3] for details.
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4 Evaluation

We evaluate our technique to validate the following two claims:

Claim-I: Smaller annotation overhead. The BFA contract annotation over-
heads are smaller in terms of atomic annotations (e.g., @Post(...), @En-
able(...)) than both competing analyses.

Claim-II: Improved scalability on large code and contracts. Our analy-
sis scales better than the competing analyzers for our use case on two
dimensions, namely, caller code size and contract size.

Experimental Setup We used an Intel(R) Core(TM) i9-9880H CPU at 2.3
GHz with 16GB of physical RAM running macOS 11.6 on the bare-metal. The
experiments were conducted in isolation without virtualization so that runtime
results are robust. All experiments shown here are run in single-thread for Infer
1.1.0 running with OCaml 4.11.1.

We implement two analyses in Infer, namely BFA and DFA, and use the
default Infer typestate analysis Topl as a baseline comparison. More in details:
(1) BFA: The Infer implementation of the technique described in this paper. (2)
DFA: A lightweight DFA-based typestate implementation based on an DFA-based
analysis implemented in Infer. We translate BFA annotations to a minimal
DFA and perform the analysis. (3) Topl: An industrial typestate analyzer,
implemented in Infer [2]. This typestate analysis is designed for high precision
and not for low-latency environments. It uses Pulse, an Infer memory safety
analysis, which provides it with alias information. We include it in our evaluation
as a baseline state-of-the-art typestate analysis, i.e., an off-the-shelf industrial
strength tool we could hypothetically use. We note our benchmarks do not require
aliasing and in theory Pulse is not required.

We analyze a benchmark of 18 contracts that specify common patterns of
locally dependent contract annotations for a class. Moreover, we auto-generate
122 client programs parametrized by lines of code, number of composed classes,
if-branches, and loops. Note, the code is such that it does not invoke the need
for aliasing (as we do not support it yet in our BFA implementation). Client
programs follow the compositional patterns we described in Ex. 2; which can also
be found in [13]. The annotations for BFA are manually specified; from them, we
generate minimal DFAs representations in DFA annotation format and Topl
annotation format.

Our use case is to integrate static analyses in interactive IDEs e.g., Microsoft
Visual Studio Code [21], so that code can be analyzed at coding time. For this
reason, our use case requires low-latency execution of the static analysis. Our
SLA is based on the RAIL user-centric performance model [1].
Usability Evaluation Fig. 4 outlines the key features of the 18 contracts we
considered, called CR-1 – CR-18. In [3] we detail CR-4 as an example. For each
contract, we specify the number of methods, the number of DFA states the
contract corresponds to, and number of atomic annotation terms in BFA, DFA,
and Topl. An atomic annotation term is a standalone annotation in the given
annotation language. We can observe that as the contract sizes increase in number
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Contract #methods #states #BFA #DFA #TOPL
CR-1 3 2 3 5 9
CR-2 3 3 5 5 14
CR-3 3 5 4 8 25
CR-4 5 5 5 10 24
CR-5 5 9 8 29 71
CR-6 5 14 9 36 116
CR-7 7 18 12 85 213
CR-8 7 30 10 120 323
CR-9 7 41 12 157 460

Contract #methods #states #BFA #DFA #TOPL
CR-10 10 85 18 568 1407
CR-11 14 100 17 940 1884
CR-12 14 1044 32 7766 20704
CR-13 14 1628 21 13558 33740
CR-14 14 2322 21 15529 47068
CR-15 14 2644 24 26014 61846
CR-16 16 3138 29 38345 88134
CR-17 18 3638 23 39423 91120
CR-18 18 4000 27 41092 101185

Fig. 4: Details of the 18 contracts in our evaluation.
of states, the annotation overhead for DFA and Topl increase significantly. On
the other hand, the annotation overhead for BFA remain largely constant wrt.
state increase and increases rather proportionally with the number of methods in a
contract. Observe that for contracts on classes with 4 or more methods, a manual
specification using DFA or Topl annotations becomes impractical. Overall, we
validate Claim-I by the fact that BFA requires less annotation overhead on all of
the contracts, making contract specification more practical.
Performance Evaluation Recall that we distinguish between base and composed
classes: the former have a user-entered contract, and the latter have contracts
that are implicitly inferred based on those of their members (that could be
either base or composed classes themselves). The total number of base classes
in a composed class and contract size (i.e., the number of states in a minimal
DFA that is a translation of a BFA contract) play the most significant roles in
execution-time. In Fig. 5 we present a comparison of analyzer execution-times
(y-axis) with contract size (x-axis), where each line in the graph represents a
different number of base classes composed in a given class (given in legends).
Comparing BFA analysis against DFA analysis. Fig. 5a compares various class
compositions (with contracts) specified in the legend, for client programs of
500-1K LoC. The DFA implementation sharply increases in execution-time as
the number of states increases. The BFA implementation remains rather constant,
always under the SLA of 1 seconds. Overall, BFA produces a geometric mean
speedup over DFA of 5.52×. Fig. 5b compares various class compositions for
client programs of 15K LoC. Both implementations fail to meet the SLA; however,
the BFA is close and exhibits constant behaviour regardless of the number of
states in the contract. The DFA implementation is rather erratic, tending to
sharply increase in execution-time as the number of states increases. Overall,
BFA produces a geometric mean speedup over DFA of 1.5×.
Comparing BFA-based analysis vs TOPL typestate implementations (Execution
time). Here again client programs do not require aliasing. Fig. 5c compares
various class compositions for client programs of 500-1K LoC. The Topl imple-
mentation sharply increases in execution-time as the number of states increases,
quickly missing the SLA. In contrast, the BFA implementation remains constant
always under the SLA. Overall, BFA produces a geometric mean speedup over
Topl of 6.59×. Fig. 5d compares various class compositions for client programs
of 15K LoC. Both implementations fail to meet the SLA. The Topl implementa-
tion remains constant until ∼30 states and then rapidly increases in execution
time. Overall, BFA produces a geometric mean speedup over Topl of 287.86×.
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Fig. 5: Runtime comparisons. Each line represents a different number of base classes
composed in a client code.

Overall, we validate Claim-II by showing that our technique removes state as
a factor of performance degradation at the expense of limited but suffice contract
expressively. Even when using client programs of 15K LoC, we remain close to
our SLA and with potential to achieve it with further optimizations.

5 Related Work

We focus on comparisons with restricted forms of typestate contracts. We re-
fer to the typestate literature [20,16,9,6,8] for a more general treatment. The
work [14] proposes restricted form of typestates tailored for use-case of the object
construction using the builder pattern. This approach is restricted in that it only
accumulates called methods in an abstract (monotonic) state, and it does not
require aliasing for supported contracts. Compared to our approach, we share
the idea of specifying typestate without explicitly mentioning states. On the
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other hand, their technique is less expressive than our annotations. They cannot
express various properties we can (e.g., the property “cannot call a method”).
Similarly, [11] defines heap-monotonic typestates where monotonicity can be seen
as a restriction. It can be performed without an alias analysis.

Recent work on the Rapid analyzer [10] aims to verify cloud-based APIs usage.
It combines local type-state with global value-flow analysis. Locality of type-state
checking in their work is related to aliasing, not to type-state specification as
in our work. Their type-state approach is DFA-based. They also highlight the
state explosion problem for usual contracts found in practice, where the set of
methods has to be invoked prior to some event. In comparison, we allow more
granular contract specifications with a very large number of states while avoiding
an explicit DFA. The Fugue tool [8] allows DFA-based specifications, but also
annotations for describing specific resource protocols contracts. These annotations
have a locality flavor—annotations on one method do not refer to other methods.
Moreover, we share the idea of specifying typestate without explicitly mentioning
states. These additional annotations in Fugue are more expressive than DFA-
based typestates (e.g. “must call a release method”). We conjecture that “must
call” property can be encoded as bit-vectors in a complementary way to our BFA
approach. We leave this extension for future work.

Our annotations could be mimicked by having a local DFA attached to each
method. In this case, the DFAs would have the same restrictions as our annotation
language. We are not aware of prior work in this direction. We also note that
while our technique is implemented in Infer using the algorithm in §2, the fact
that we can translate typestates to bit-vectors allows typestate analysis for local
contracts to be used in distributive dataflow frameworks, such as IFDS [19],
without the need for modifying the framework for non-distributive domains [17].

6 Concluding Remarks

In this paper, we have tackled the problem of analyzing code contracts in low-
latency environments by developing a novel lightweight typestate analysis. Our
technique is based on BFAs, a sub-class of contracts that can be encoded as bit-
vectors. We believe BFAs are a simple and effective abstraction, with substantial
potential to be ported to other settings in which DFAs are normally used.
Acknowledgements We are grateful to the anonymous reviewers for their con-
structive remarks. This work has been partially supported by the Dutch Research
Council (NWO) under project No. 016.Vidi.189.046 (Unifying Correctness for
Communicating Software).
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