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ABSTRACT

As enterprises have started developing and deploying complicated
data science pipelines at scale, the need for robust mechanisms that
enable compliance, security, explainability, and fairness has become
more pronounced. In this paper, we present Geyser, an extensible
provenance system for data science workloads that can be used
as a foundation for enterprise-grade data science. Our system sup-
ports a wide range of pipelines and applications by maintaining a
knowledge base of data science APIs, enabling static and dynamic
provenance extraction, and supporting various storage mechanisms.
We demonstrate the wide applicability of the system using various
industrial applications such as provenance extraction, model com-
pliance, model linting, model versioning, and poisoning detection.
A video of the demo is available at https://aka.ms/geyserdemo.
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1 INTRODUCTION

Provenance extraction has become a critical step towards enterprise-
grade data science, enabling auditing, model debuggability, repro-
ducibility, or explainability. Provenance broadly encodes input-
output derivation relationships between datasets across workflows.
In the context of data science, such relationships may include a
model trained using columns from an input table, any transforma-
tion applied, or a model making a prediction on input records.

Unfortunately, extracting provenance over data science work-
flows is challenging primarily for two reasons. First, data science
pipelines invoke a variety of external libraries that contain a plethora
of operations [13]. Without systematically encoding the semantics
of operations (e.g., the “fit” function produces an ML model), the
output of provenance extractors will not be meaningful.

Second, provenance applications have different provenance ex-
traction requirements. These requirements may vary in terms of
fidelity (fine- vs. coarse-grained provenance) or storage (volatile vs.
non-volatile and optimized for read, write, or both). For example,
a model debugging application might require provenance to be
stored in memory so that the information can be used immediately,
whereas an auditing application might use provenance information
only once per year, and thus storing it at a blob storage would
be a better option. We thus need to design extensible provenance
systems that (1) take into account the semantics of the data science
workflows to produce meaningful output and (2) support various
provenance extraction methods to better meet application needs.

In this direction, we introduced Vamsa [10], our early proto-
type for knowledge base (KB) driven provenance extraction. Vamsa
takes as input (1) a Python script and a KB with semantic informa-
tion of function calls (e.g., pandas.read_csv outputs a dataframe,
while sklearn.fit outputs a trained ML model), (2) ways to en-
code provenance information (e.g., capture dependencies between
models and input files or/and columns of CSV files and model
features), and (3) where and how to store the information (e.g.,
to a remote catalog or in-memory). It then extracts provenance
through a KB-guided, static dependency analysis on the Python
script. By analyzing scripts statically, Vamsa is able to scale prove-
nance extraction to a large volume of data science pipelines. Static
provenance extraction, however, is often imprecise and limited to
coarse-grained provenance due to no access to runtime information
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Listing 1: Running Example

1. from sklearn import tree
2. import sklearn.model_selection import train_test_split
3. import pandas as pd

# loading patient data to dataframe
4. df = pd.read_csv("heart_disease.csv")

# specifying the set of features and ground truth
5. df = df.drop(columns=df.columns[0:3], axis=1)
6. train_x = df.drop(['ID', 'SSN', 'hospitalid '], axis=1)
7. train_y = df['Target ']

# splitting data to train and evaluation sets
8. train_x2 , val_x2 , train_y2 , val_y2 = train_test_split(

train_x , train_y , test_size=0.2)
# initializing and training the model

9. clf = tree.DecisionTreeClassifier(random_state=1234)
10. clf.fit(train_x2 , train_y2)

(i.e., dynamic control and data flows complicate correct extraction),
as we elaborate further in Section 2.

To this end, in this demonstration paper, we extend Vamsa to
access runtime information and enable KB-driven, dynamic prove-
nance extraction. The resulting system, namely, Geyser, extends
the functionality of Vamsa to also capture (1) coarse-grained prove-
nance precisely as well as (2) fine-grained provenance. To demon-
strate applications on top of Geyser, we also introduce provenance
storage and querying capabilities that adhere to well-established
semantics [5, 7, 12]. Finally, we discuss our demonstration plans
to (1) show applications of Geyser including (static and dynamic)
provenance extraction, compliance testing, model linting, version-
ing, and poisoning detection; and (2) enable participants to interact
with Geyser and its applications through Jupyter notebooks.

2 RUNNING EXAMPLE

In our discussion, we use a Python script (that was used for
the Kaggle Heart Disease Competition [6]) as our running example
(Listing 1). In this script, a DecisionTreeClassifier model is
trained (Lines 9-10) using the heart_disease.csv dataset (specified in
Line 4). The input features for the model are based on all columns
of the dataset except the first three (drop call in Line 5) and the
ID, SSN, and hospitalid columns (drop call in Line 6). The target
label is based on the Target column of the input dataset (Line 7).

To illustrate the main limitation of static extractors, note that
the Target column is used as a label in our example, but it is
not explicitly dropped from the feature set, potentially leading to
target leakage in ML training. With static provenance extraction,
we cannot infer if the Target column was dropped from the feature
set (Target may have been dropped by the drop call in Line 5).

To further highlight scenarios when this limitation arises in
practice—hence, showcasing the importance of dynamic provenance—
we will extend this script in our demonstration to (1) introduce
a filter on age (i.e., df[df.age >= X ] ) and convert dataframes
to numpy arrays before training and (2) get as input the path to
the CSV file and bound X on age as command line arguments. The
first extension is useful for demonstrating how we capture and use
fine-grained provenance. The second extension is intended to show
the importance of runtime information (command line arguments)
in inferring correct and complete provenance graphs.

3 SYSTEM OVERVIEW

In this section, we start by briefly reviewing the architecture of
Vamsa, our KB-driven static provenance extractor. Then, we in-
troduce Geyser, showing how we (1) extended Vamsa to further
extract dynamic provenance in a KB-driven fashion and (2) intro-
duced provenance storage and querying capabilities.

Figure 1: Vamsa (Static, KB-driven, provenance extractor).

Figure 2: Example provenance relationship (PR) in our low-

level, worklow-based intermediate representation.

3.1 Static Extractor

Vamsa takes a Python script as input and statically analyzes it to
extract provenance (see also Figure 1). More specifically, Vamsa
first compiles the Python script to a dataflow through its Deriva-
tion Extractor component. The dataflow is expressed in an in-
house workflow-based intermediate representation (WIR) that is
language-agnostic. At its core, Derivation Extractor first en-
codes individual statements as quadruples (caller, operation, inputs,
outputs) that we refer to as provenance relationships (PRs). (Note
that these PRs are at the dataflow level— not theML-related ones we
aim to extract.) For instance, for the statement df = pd.read_csv
('heart_disease.csv'), the quadruple extracted is (caller=pd,
operation=read_csv, input='heart_disease.csv', output=df).
Such quadruples are then encoded in a graph form, as shown in Fig-
ure 2. Finally, based on transitivity, Derivation Extractor con-
nects the graphs from all PRs to form the WIR for the whole script.

The dataflow expressed in ourWIR is then input to the KB-based
Annotator that annotates nodes and edges of the underlying
graphs with annotations from our KB. More specifically, the KB-
basedAnnotator navigates the graph by visiting PRs starting from
the PRs generated for import statements. For each visited PR, it
searches in the KB for possible annotations and, if found, annotates
the components of the PR (i.e., caller, operation, output, and input).
Considering our read_csv example, the KB may contain that the
output is a dataframe and the input is a path to a CSV file. The
KB-based Annotator, then, will annotate the input/output nodes
accordingly. Finally, for each visited PR, the KB-based Annotator
will navigate forward based on the output(s) of the PR, but also
backward through its inputs that were just annotated, if any.

The end result of KB-based Annotator is the WIR annotated
with information from the KB. This annotated WIR is then input
to Provenance Tracker that is responsible for extracting prove-
nance information. At its core, Provenance Tracker first identifies
nodes in the WIR corresponding to models and datasets. These two
sets then serve, respectively, as sinks and sources in the WIR that
Provenance Tracker navigates to identify which dataset has con-
tributed to which model. Furthermore, by analyzing operations
in the path between models and datasets, Provenance Tracker
infers which columns from the input have contributed to which
features of the model (if any); hence, extracting (dataset column
↔ model feature) provenance relationships. Finally, columns are
grouped into inclusion or exclusion sets based on whether they
contribute or not, respectively, to a feature or label.
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Figure 3: Geyser: An end-to-end provenance management

system for data science projects.

3.2 Dynamic Extractor

The key observation to extend our KB-driven approach to extract
dynamic provenance information is that we still need to operate
on the annotated WIR, albeit with the aim of dynamic dataflow
analysis. In fact, the main distinction is that dynamic provenance
extractors must observe runtime information (e.g., variable values,
branches taken at runtime, records from files, or model weights) for
situations where static extractors cannot make accurate decisions.

To perform dynamic provenance extraction, then, Geyser takes
a Python script as input and generates its annotated WIR using the
Derivation Extractor and KB-based Annotator components
of Vamsa (see also Figure 3). The annotated WIR and the original
script are then input into the Code Synthesizer component that
is responsible for injecting code in the Python script to extract
provenance information as part of code execution—hence, capturing
dynamic provenance information. Finally, the output of the Code
Synthesizer is an instrumented Python script that gets executed
to result in the execution of the original Python script along with
the extraction of dynamic provenance information.

There are two major challenges that Geyser needs to address
throughout this process: WIR verbosity and code injection.

Regarding the WIR verbosity, consider filtering records with age
less than 40 in our example (df = df[df.age >= 40] ) and later
projecting the Target column to set the ground truth. The WIR for
these steps is shown in Figure 4 (solid box). Even for these simple
steps, the WIR contains many operations and temporary variables.

From a static provenance extraction perspective, this unpack-
ing of operations to long chains is (1) necessary—because the KB
may contain entries for fine-grained operations (e.g., index) and
(2) convenient—because finding connections between (models↔
datasets) or (columns↔ features) rely only on navigating inputs
and outputs of PRs in the WIR (without requiring the knowledge
for connections across PRs). From a dynamic provenance extraction
perspective, however, and especially for cases when we want to
extract fine-grained provenance, the WIR verbosity is unnecessary
and inconvenient: typically, capturing fine-grained provenance is
expressed for logical operators (e.g., selection, group-by aggrega-
tion, matrix transpose) that can span multiple nodes and edges in
the WIR. As such, attempting to extract such type of provenance
directly on the WIR would result in identifying subgraphs of the
WIR with the semantics of logical operators first. However, this is a
laborious and error-prone process, and Geyser aims to automate it.

Figure 4: Example WIR highlighting subgraphs for filtering

on age (solid box) and projection on Target (dashed box).

To address this problem, the Code Synthesizer performs a
condensing step to identify subgraphs of the WIR and expose them
along with the semantics of logical operators. Importantly, this
condensing step is driven by our KB because, over time, we expect
(1) provenance to be extracted for more logical operators than the
ones we currently anticipate and (2) each logical operator may have
multiple ways of getting expressed in our WIR (e.g., a selection can
be either a dataframe selection or an if condition in a loop).

In more detail, recall that the input to the Code Synthesizer is
the annotated WIR which maintains information for the types of
inputs and outputs of each operation in the WIR. For our example,
these annotations are shown in italics in Figure 4. The types of
inputs and outputs introduce boundaries in our WIR that the Code
Synthesizer uses to identify subgraphs of interest. The premise
is that these subgraphs could correspond to higher-level logical
operators (e.g., filter and projection in our example in Figure 4) for
which we aim to track provenance. To perform dynamic provenance
extraction, we then maintain in the KB a set of subgraph patterns
and corresponding provenance tracking code to inject. The Code
Synthesizer then matches identified subgraphs in the WIR with
patterns stored in the KB and, in case a pattern was found, proceeds
with the corresponding code injection. In this way, what type of
provenance is extracted and how provenance is stored is entirely
KB-driven—which provides us with the necessary extensibility we
aim for. In fact, this design allows us to introduce in our KB both
traditional provenance extraction techniques [5, 13], and latest
advances in the data science domain [3, 4, 8] in a principled way.

In particular, the Geyser KB currently supports coarse- and
fine-grained provenance for ~358 and ~56 functions, respectively
(including functions for relational/dataframe, linear algebra, and
model training/inference operations). With this support, Geyser
has reached > 98% precision and recall (see [10] for a definition of
these metrics) on a collection of ~100 Kaggle and internal scripts—
outperforming Vamsa by up to ~80% in precision and recall.

Finally, to address the second challenge (code injection), we
altered Derivation Extractor to perform location tracking be-
tween WIR nodes and their originating AST ones. Then, we created
a shim layer that can inject code before or after AST nodes. The
final script is the result of compiling the altered AST to Python.

3.3 Storage and Querying

Regarding provenance storage, Geyser exposes write APIs follow-
ing well-established practices from provenance research on prove-
nance data models and provenance storage backends for both fine-
and coarse-grained provenance graphs. Regarding fine-grained
provenance models, we expose both normalized and denormalized
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ones [5, 12]. Regarding coarse-grained models, we expose both
Apache ATLAS- and W3C PROV-based type systems [1, 9] for en-
coding data models (i.e., types of processes and datasets of the
provenance graphs). Furthermore, our APIs expose configurable
write interfaces to select the backend storage. Currently, we support
in-memory, Apache Arrow, database, and blob storage backends—
aiming to provide broad coverage on application requirements: from
applications that require immediate and fast access to provenance
storage (e.g., debugging) to applications with long-term storage
requirements (e.g., end-of-year auditing).

Regarding provenance querying, recall that provenance is a
graph, and, as such, we expose point, backward, and forward queries
following querying models [7]. Furthermore, provenance graphs
are also suitable for propagating annotations. In this direction, we
expose interfaces that allow applications to define and propagate an-
notations through provenance graphs. For fine-grained provenance
graphs, where operations are relational, we expose well-established
semirings [7] for annotation propagation resolution. For coarse-
grained provenance graphs, we follow the annotation semantics
provided by Apache ATLAS and W3C PROV data models.

4 DEMONSTRATION

For our demonstration, we first show how Geyser extracts static
and dynamic provenance. Then, we showcase the functionality of
four applications that we built on top of Geyser: compliance, model
linting, versioning, and poisoning detection.Geyser is implemented
in Python, and we run our demonstration on Jupyter notebooks
and connected services such asMicrosoft Purview.We also welcome
participants to interact with Geyser through these notebooks. A
video of the demo is available at https://aka.ms/geyserdemo.
Provenance Extraction. To start our demonstration, we show
the provenance information that Geyser extracts (both static and
dynamic). As an input Python script, we use our running example
(withmodifications described in Section 2 for the dynamic case). Fur-
thermore, to showcase the provenance stores we support (by means
of supporting different provenance storage requirements), we store
the coarse-grained provenance information both in-memory and
in Microsoft Purview, whereas fine-grained provenance is stored
in Apache Arrow (locally and in Azure Blob Storage).
Compliance. We then first use the extracted provenance infor-
mation to determine whether a model relies on sensitive data (i.e.,
Personal Identifiable Information). For our demonstration, using
the extracted coarse-grained provenance information (i.e., features
of the model depending on columns of heart_disease.csv file),
we search in Microsoft Purview for the dataset heart_disease.
csv (using a point query through Geyser’s query layer). We have
pre-populated Microsoft Purview with the provenance informa-
tion of heart_disease.csv. In particular, we assume this CSV file
has been generated from a database table through an export SQL
query. Furthermore, note that the heart_disease.csv contains an
SSN column that, in our setup, originates from a database column
classified as PII. Hence, by dropping or not the SSN column in our
example Python script, we fail or not the compliance rule.
Model Linting. Similarly to compliance testing, we perform checks
for model linting. In particular, recall from Section 2 that the Target
column is set as the label, yet it is not clear if it is used in the

feature set. Using static provenance, model linting then triggers a
corresponding warning (i.e., indicating there may or may not be a
problem). Using dynamic provenance, however, we showcase that
we can deduce whether Target is used as a feature or not.
Versioning. Furthermore, we use provenance extracted across runs
to explain why the resulting models are different or identical. For
our demonstration, we run our example Python script by changing
the filter on age and modifying the input dataset. We then analyze
differences between both coarse- and fine-grained provenance to
determine why a model (1) is different (e.g., the input file changed)
or (2) same (e.g., filter change→ no selectivity change) across runs.
Poisoning Detection. Finally, we use fine-grained provenance to
detect poisonous sources using a poisoning detection algorithm [2,
11]. The algorithm takes as input annotations of each row (i.e., its
source and, optionally, if it is trustworthy) of the feature matrix
that is input to model training. The algorithm then tests whether
the model performs similarly for each source; the performance for
poisonous sources is expected to differ. For our setup, we need
to construct these annotations based on information available in
the input file. Hence, fine-grained provenance is critical. In par-
ticular, heart_disease.csv contains patient-related information
(one patient per record), and each such record originates from a
hospital. We designate one hospital to be a poisonous source (we
altered labels for this source), another to be trusted, and two to be
unknown. To construct the annotations, we backward trace from
each row in the feature matrix to the input records of the CSV
file—to discover the source hospitals. Then, we forward trace in
the opposite direction to propagate annotations for the hospital we
already trust. With these trace operations, the annotations are now
constructed and are input to the poisoning detection algorithm.
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