
Towards Elastic Incrementalization for Datalog
David Zhao

University of Sydney

dzha3983@uni.sydney.edu.au

Mukund Raghothaman

University of Southern California

raghotha@usc.edu

Pavle Subotić

Microsoft

pavlesubotic@microsoft.com

Bernhard Scholz

University of Sydney

bernhard.scholz@sydney.edu.au

ABSTRACT
Various incremental evaluation strategies for Datalog have been

developed that reuse computations for small input changes. These

methods assume that incrementalization is always a better strat-

egy than recomputation. However, in real-world applications such

as static program analysis, recomputation can be cheaper than

incrementalization for large updates.

This work introduces an elastic incremental approach with two

strategies that can be selected based on the impact of the input

change. The first strategy is a Bootstrap strategy that recomputes

the entire result for high-impact changes. The second is an Up-
date strategy that performs an incremental update for low-impact

changes. Our approach allows for a lightweight Bootstrap strategy

suitable for high-impact changes, with the trade-off that Update

may require more work for small changes. We demonstrate our

approach using real-world applications and compare our elastic

incremental approach to existing methods.

CCS CONCEPTS
• Software and its engineering → Constraint and logic lan-
guages; Incremental compilers; • Information systems→ Rela-
tional database query languages; • Theory of computation →
Interactive computation; Streaming models; Program analysis; Data
provenance.

KEYWORDS
Datalog, incremental evaluation, Datalog compilers, provenance

ACM Reference Format:
David Zhao, Mukund Raghothaman, Pavle Subotić, and Bernhard Scholz.

2021. Towards Elastic Incrementalization for Datalog. In 23rd International
Symposium on Principles and Practice of Declarative Programming (PPDP
2021), September 6–8, 2021, Tallinn, Estonia. ACM, New York, NY, USA,

16 pages. https://doi.org/10.1145/3479394.3479415

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

PPDP 2021, September 6–8, 2021, Tallinn, Estonia
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8689-0/21/09. . . $15.00

https://doi.org/10.1145/3479394.3479415

1 INTRODUCTION
Logic languages such as Datalog have seen widespread adoption in

recent years in areas such as static program analysis [2, 8, 12, 14],

declarative networking [4, 20, 47], security analysis [33], business

applications [3] andmachine learning [27]. Themain reasons for the

widespread adoption have been the availability of high-performance

logic engines [3, 17, 22] and the ease of expressing programs declar-

atively, i.e., computations can be expressed succinctly, providing

means for rapid prototyping of scientific and industrial applications.

The standard Datalog evaluation (which we refer to as batch-
mode), computes the Intensional Database (IDB, or the output facts),
given a set of rules, and an Extensional Database (EDB, or the

input facts). However, many real-world applications recompute

most of their IDB with slight variations of the EDB [26, 31]. Hence,

several state-of-the-art Datalog engines have proposed incremen-

tal evaluation techniques [24, 26, 29] to facilitate streaming, i.e.,

the evaluation reuses the IDB from the previous computation to

compute the new IDB given some changes to the EDB.

State-of-the-art incremental evaluation approaches operate on

several assumptions: (1) that the impact, i.e., number of overall tuple

changes, is proportional to the update size, and (2) that the use cases

exhibit a continuous stream of small impact updates. Indeed for

several use cases [31] these assumptions tend to hold. However, for

other notable use cases such as program analysis in a continuous

integration/continuous delivery (CI/CD) setup [10, 11, 42] these

assumptions do not hold. For example, static analyses written in

Datalog can consist of hundreds or thousands of highly recursive

rules and relations [8, 13]. Due to the complexity of the ruleset, one

can no longer assume that update size is proportional to the impact

size. Our experimental evaluation on the Doop program analysis

framework found large variability in the impact of updates due to
the connectivity of points-to analyses, where even small program

changes may substantially change pointer sets of variables. Another

concern is that static analyzers are deployed in CI/CD pipelines

where state-of-the-art incremental evaluation gives no guarantee

that updates will be structurally small. For instance, when the code

base is updated, the initial change is often a refactor or new feature

implementation. Such code changes typically result in large changes

to the input of an analysis. These changes may then be followed

by smaller changes resulting from minor review suggestions, but

as we show, even these smaller input changes do not necessarily

result in small impacts. Thus, we argue the success of incremental

evaluation techniques for such use cases requires minimizing the

overhead of evaluating large impact updates.

https://doi.org/10.1145/3479394.3479415
https://doi.org/10.1145/3479394.3479415

PPDP 2021, September 6–8, 2021, Tallinn, Estonia David Zhao, Mukund Raghothaman, Pavle Subotić, and Bernhard Scholz

𝐸1 𝑃 𝐼1

𝐸2 𝑃 𝐼2

𝐸3 𝑃 𝐼3

(a) Batch-mode

∅

𝐸1 Δ𝑃 𝐼1

𝜎1

Δ𝐸2 Δ𝑃 𝐼2

𝜎2

Δ𝐸3 Δ𝑃 𝐼3

(b) Incremental

Figure 1: Batch-mode vs. Incremental Evaluation

Consider Fig. 1 that illustrates a generic incremental computation

setup. Fig. 1a shows a batch-mode evaluation for a Datalog program

𝑃 and EDBs 𝐸1, 𝐸2, and 𝐸3. The batch-mode evaluation runs the

program 𝑃 with each EDB separately to produce the IDBs 𝐼1, 𝐼2, and

𝐼3. However, if only a small portion of the EDB and IDB changes

between runs, many computations in the batch-mode evaluation

may have been repeated. An incremental evaluation Δ𝑃 (illustrated

in Fig. 1b) can reuse computations from a previous run, which

we call an epoch. A Computational State 𝜎1 encodes the previous
computations for 𝐼1 in a special format so that the next run can

reuse the computations. With state 𝜎1 and the change in input Δ𝐸2,
the incremental evaluation produces the output 𝐼2 and the new

computational state 𝜎2. This process may be repeated, with a series

of updates to the EDB being provided via Δ𝐸𝑖 . For the first epoch,
we use the empty state as computational state and 𝐸1 as Δ𝐸1 to
produce 𝐼1 and the state 𝜎1. Any subsequent change Δ𝐸𝑖 in the

EDB is processed by using the previous computational state 𝜎𝑖−1
to generate 𝐼𝑖 .

State-of-the-art incremental evaluation strategies [26, 28, 29]

represent their computational state exhaustively to perform small

updates efficiently. Because of their exhaustive representation, how-

ever, initiating a stream with the state-of-the-art approaches can be

prohibitively slow and cannot be used to react to large updates. For

example, when a static program analysis seeks to reuse previous

computations for a large code refactoring, significant portions of

the control flow graph may have been replaced. In such a use case,

an incremental evaluation will essentially perform two computa-

tions, one to delete the old control flow graph, and one to compute

the new control flow graph with additional overheads caused by

the incrementalization. Therefore, these heavyweight updates are

better served by an evaluation strategy that is closer to standard

batch-mode evaluation augmented with state for the future updates

to be performed incrementally.

In this work, we demonstrate that both fully non-incremental

and fully incremental strategies are not effective in some scenarios.

Therefore, we propose an elastic incremental evaluation scheme

called Bootstrap-Update, which is a hybrid approach. Our approach

has two distinct strategies to evaluate an update: a specialized Boot-
strap denoted as 𝑃𝑏 (Fig. 2a) and Update denoted as 𝑃𝑢 (Fig. 2b). The

specialized Bootstrap resembles an augmented batch-mode evalua-

tion that produces the computational state from scratch to allow

subsequent updates, whereas Update is an incremental evaluation

strategy.

𝑃𝑏

𝜎𝑘

𝐸𝑘

𝐼𝑘

(a) Bootstrap Strategy

𝜎𝑘−1

𝑃𝑢

𝜎𝑘

Δ𝐸𝑘 𝐼𝑘

(b) Update Strategy

∅

𝐸1

𝑃𝑏

Δ𝐸2

𝐼1

𝑃𝑢

Δ𝐸3

𝐼2

𝑃𝑢

𝐼3

𝐸4

𝑃𝑏

Δ𝐸5

𝐼4

𝑃𝑢 . . .

𝐼5

(c) Elastic Incremental, 𝐸4 causes a restart in the stream using Boot-
strap

Figure 2: Elastic Incremental Evaluation

Our approach proposes a novel sparse encoding that maintains a

lightweight state 𝜎 . Our state exhibits a space complexity of O(|𝐼 |)
(i.e. linear in the size of the output) whereas existing incremental

encodings [26, 29] have a worst-case space complexity of O(𝑚 |𝐼 |)
where 𝑚 is the number of fixpoint iterations in the semi-naive

evaluation algorithm [1]. Our lightweight state allows for an accel-

erated Bootstrap algorithm that can handle high-impact updates by

efficiently recomputing the state from scratch, with the trade-off

that the Update strategy may require more work for smaller up-

dates. Furthermore, we provide a simple heuristic for choosing the

appropriate strategy: we re-run the bootstrap when the incremen-

tal update takes more than a fraction (as a switching parameter) of
the last bootstrap’s runtime. This switching parameter typically

depends on the behavior of each application and the typical update

characteristics for that application. Our solution operates under the

insight that if we have comparable performance with batch-mode

Datalog evaluation on large impact updates and a small slow down

on low impact updates, we will have an overall net gain by selective

application of incremental evaluation.

We have integrated our elastic Bootstrap-Update incremental

evaluation in the open-source, high-performance Datalog engine

Soufflé [23]. We have performed an extensive evaluation on a num-

ber of use cases that shows our approach’s utility compared to

existing techniques on both large and small updates. We also pro-

vide a discussion of the practical considerations for building incre-

mental evaluation in Soufflé that include relational data structures,

parallelization, and scheduling strategies.

In summary, we make the following contributions in this paper:

(1) We present a new problem - that incremental evaluation

should be elastic, i.e., it should be sensitive to the impact of

an update.

(2) We present a novel incremental evaluation using a sparse

derivation counting encoding, exhibiting superior perfor-

mance and lower memory overhead for elastic use cases.

(3) We extend Soufflé, an open-source Datalog evaluation en-

gine for elastic incremental evaluation, and propose several

engine optimizations for superior performance.

(4) We provide an extensive experimental evaluation validating

the utility of our contribution.

Towards Elastic Incrementalization for Datalog PPDP 2021, September 6–8, 2021, Tallinn, Estonia

2 BACKGROUND
In this section, we provide an example to explain the background

of Datalog evaluation.

2.1 Example: Datalog Pointer Analysis
We present a program analysis example written in Datalog that

computes pairs of variables that may alias in a source program.

Figure 3a shows a fragment of object-oriented source code en-

coded in the form of relations in Figure 3b and represented diagram-

matically in Figure 4. From this encoded relational representation

of the source program, a (field sensitive but flow insensitive [41])

pointer analysis is written in Datalog, in Figure 3c. In this analysis,

the input relations (also known as Extensional Database, or EDB)

are new, assign, load, and store, each of which represents a par-

ticular type of operation in the source program. During the analysis,

the Datalog specification computes output relations (also known

as Intensional Database, or IDB) vpt, which relates variables and

the objects that they point to, and alias, which relates pairs of

variables that may point to the same object.

This logic specification consists of four rules (here labeled r1
through r4). Each rule is a Horn clause consisting of two parts: the

predicate on the left of the implication sign (:-) is the head, and the
set of predicates on the right is the body. Each predicate consists

of a relation name and a sequence of constants and variables of

appropriate arity. For example, the rule

vpt(Var,Obj) :- assign(Var,Var2), vpt(Var2,Obj).

has the predicate vpt(Var,Obj) as the head, and the two predicates
assign(Var,Var2) and vpt(Var2,Obj) as the body. Negation and
constraints are omitted for now but are discussed in more detail in

Section 3.3.

A predicatemay be instantiated, where all its variables aremapped

to constants to form a tuple. An instantiated rule is a rule where

each predicate is instantiated, such that the variable mappings

are compatible between all the predicates. A Datalog rule is read

from right to left as a universally quantified implication: “for all

rule instantiations, if every tuple in the body is derivable, then the

corresponding tuple for the head is also derivable”.

2.2 Semi-Naïve Evaluation
To evaluate a Datalog specification, modern engines use a bottom-
up approach, which begins from the input tuples, and in each step

attempts to derive more tuples using an immediate consequence
operator Γ𝑃 (𝐼) = 𝐼 ∪ {𝑡 | 𝑟 = 𝑡 :- 𝑡1, . . . , 𝑡𝑛, each 𝑡𝑖 ∈ 𝐼 } such that 𝑟

is a valid instantiation of a rule in 𝑃 with each 𝑡𝑖 ∈ 𝐼 . The evaluation
ends when a fixpoint is reached. Many Datalog solvers improve on

this bottom-up strategy by utilizing semi-naïve evaluation. Semi-

naïve evaluation proposes twomain optimizations: (1) Stratification:

the Datalog specification is split into strata. Firstly, a precedence
graph of relations is computed, where there is an edge from relation

𝑅
body

to𝑅
head

if𝑅
body

appears in the body of a rule with𝑅
head

in the

head. Then, each strongly connected component of the precedence

graph forms a stratum. Each stratum is evaluated in a bottom-up

fashion as a separate fixpoint computation in order based on the

topological order of SCCs. The input to a particular stratum is the

relations in the previous strata in the precedence graph. (2) New

knowledge optimization: within a single stratum, the evaluation is

optimized in each iteration by considering the new tuples generated

in the previous iteration. A new tuple is generated in the current

iteration only if it directly depends on at least one tuple generated in

the previous iteration, avoiding the recomputation of tuples already

computed in prior iterations.

The standard semi-naïve evaluation is presented in Algorithm 1

for a single stratum. The inputs for the algorithm are 𝐸, the input

set of tuples (since this is a single stratum, the input may be EDB

tuples or tuples from earlier strata), and 𝑃 , the set of Datalog rules

forming the stratum.

Algorithm 1 Semi-Naïve(𝐸, 𝑃)

1: Δ0 ← 𝐸

2: for all 𝑘 ∈ {1, 2, . . .} do
3: 𝐼𝑘−1 ←

⋃
0≤𝑖<𝑘 Δ𝑖

4: Δ𝑘 ← Π𝑃 [𝐼𝑘−1 | Δ𝑘−1] \ 𝐼𝑘−1
5: if Δ𝑘 = ∅ then
6: return 𝐼𝑘−1

This algorithm begins by initializing the delta and the full set

of tuples from the input (line 1). In the fixpoint loop, line 4 is the

critical line, evaluating the Datalog rules. This line uses notation

adapted from [29], which introduces a rule evaluation operator, Π,
where

Π𝑃 [𝐼 | Δ] =
{
𝑡

���� 𝑡 :- 𝑡1, . . . , 𝑡𝑛 is an instantiated rule in 𝑃

where {𝑡1, . . . , 𝑡𝑛} ⊆ 𝐼 and {𝑡1, . . . , 𝑡𝑛} ∩ Δ ≠ ∅

}
Here, Π𝑃 finds the head tuples of all rules in 𝑃 instantiated from

tuples in 𝐼 , where at least one body tuple also exists in Δ. For the
rest of this paper, the program 𝑃 is omitted from Π𝑃 where it is

clear. The dependence on Δ is the new knowledge optimization in

semi-naïve evaluation. By requiring that at least one body tuple for

each rule derivation is contained in Δ𝑘−1, the algorithm ensures

that new tuples are only generated if at least one body tuple was

new in the previous iteration.

Algorithm 1 continues by merging the newly discovered tuples

into the full relation (line 3). Then, if a fixpoint has been reached

(i.e., no new tuples are generated), the evaluation ends (line 5).

As a concrete example of semi-naïve evaluation, consider the

recursive stratum containing vpt in the running example. In the ini-

tialization phase, the algorithm simply copies the inputs. Therefore,

in iteration 0,

Δ0 = 𝐼0 =


new(a, L1), new(c, L3), new(d, L4),
assign(a, b), assign(b, a), store(c, f, a),
load(e, d, f), load(b, c, f)


In iteration 1, note that the vpt relation is empty in 𝐼0. Therefore,

only the non-recursive rule r1 can be applied, generating

Δ1 = {vpt(a, L1), vpt(c, L3), vpt(d, L4)}
𝐼1 = 𝐼0 ∪ Δ1

Using 𝐼1 and Δ1, the algorithm can now apply the recursive rules

of vpt as well. Rule r1 no longer applies since there are no tuples

from relation new in Δ1. From rule r2, we can derive vpt(b,L1)
from the instantiation vpt(b,L1) :- assign(b,a), vpt(a,L1).
From rule r3, we can again derive vpt(b,L1), from vpt(b,L1) :-

PPDP 2021, September 6–8, 2021, Tallinn, Estonia David Zhao, Mukund Raghothaman, Pavle Subotić, and Bernhard Scholz

L1: a = new O();
L2: b = a;

L3: c = new P();
L4: d = new P();

L5: c.f = a;
L6: e = d.f;
L7: b = c.f;
L8: a = b;

(a) Input Program

new(a, L1).
assign(b, a).

new(c, L3).
new(d, L4).

store(c, f, a).
load(e, d, f).
load(b, c, f).
assign(a, b).

(b) EDB Tuples

vpt(Var, Obj) :- new(Var, Obj). //r1
vpt(Var, Obj) :- assign(Var, Var2),

vpt(Var2, Obj). //r2
vpt(Var, Obj) :- load(Var, Y, F),

store(P, F, Q),
vpt(Q, Obj),
vpt(P, Obj2),
vpt(Y, Obj2). //r3

alias(Var1, Var2) :- vpt(Var1, Obj),
vpt(Var2, Obj). //r4

(c) Datalog Pointer Analysis

Figure 3: Program Analysis Datalog Setup

𝑎

𝑏

𝑐

𝑒

𝑑

𝐿1 𝐿3 𝐿4

𝑛
𝑒𝑤

𝑎
𝑠𝑠
𝑖𝑔
𝑛

𝑎
𝑠𝑠𝑖𝑔

𝑛

𝑙𝑜
𝑎𝑑
[𝑓]

𝑠𝑡𝑜𝑟𝑒 [𝑓]

𝑛
𝑒𝑤

𝑛
𝑒𝑤

𝑙𝑜
𝑎
𝑑
[𝑓
]

Figure 4: Pointer Input Diagram

load(b,c,f), store(c,f,a), vpt(a,L1), vpt(c,L3), vpt(c,L3).
Therefore, these two derivations generate the same tuple, and so,

Δ2 = {vpt(b, L1)}
𝐼2 = 𝐼1 ∪ Δ2

In iteration 3, rule r2 can generate vpt(a,L1). However, this
tuple is already contained in 𝐼2, and therefore 𝐼3 = 𝐼2 and a fixpoint

is reached.

2.3 Incremental Datalog Evaluation
Incremental evaluation refers to a procedure to update the result of
the Datalog computation given some changes in the input without

performing a full recomputation. An incremental evaluation pro-

ceeds in epochs, where each epoch represents one round of updates,

i.e., inserting/deleting tuples from the input and computing the

new result and state. We refer to the inserted and deleted tuples as

the diff. For the workflow in Fig. 2c, each 𝐼𝑘 represents the result

of epoch 𝑘 , and each Δ𝐸𝑘 represents the corresponding diff. To

summarize, the central problem of incremental evaluation is as

follows:

Definition 2.1 (Incremental Evaluation). Given a Datalog program
𝑃 , an input data set 𝐸, the result 𝑃 (𝐸), an insertion set 𝐸+ and a

deletion set 𝐸−, compute the result 𝑃 ((𝐸 ∪ 𝐸+) \ 𝐸−).

The cost of an update can be measured by its impact. Typically,

high impact changes result in greater computation overhead.

Definition 2.2 (Incremental Update Impact). The impact of an

update is the number of IDB tuples changed as a consequence of

the update, i.e., Δ𝐼 .

We note that while the state-of-the-art incremental evaluation

strategies, such as DRed [16], its related strategies [18, 19, 29], and

counting-based algorithms [26, 28] have proven worthwhile for ap-

plications where each update has a small impact on the computed

result, we have observed that this assumption does not hold in gen-

eral for all incremental workloads. For a concrete example, consider

our running example. We may remove the line L6 in Figure 3a as

part of an update to the software. This removed line would result

in the input tuple load(e,d,f) being removed. From the graph

in Figure 4, this only affects a single edge, and does not affect the

connected component containing a, b, and c. Therefore, computing

the result after performing this update should take advantage of

this separation, and this update has small impact. However, imag-

ine also removing the line L1 as part of the same software update.

Then, the input tuple new(a,L1) would be deleted, and both con-

nected components in Figure 4 would be affected. This results in

an update with large impact, where half of the tuples in vpt are

deleted, and all of the tuples in alias are deleted. In these situations,
where both small and large updates may be present, state-of-the-art

incremental evaluation strategies may not be effective.

3 ELASTIC INCREMENTAL EVALUATION
This section describes our encoding and algorithms for elastic incre-

mental evaluation. Recall from Fig. 2 that we have two evaluation

procedures, one to initialize the computation state and one to incre-

mentally update it. We call these evaluations Bootstrap and Update
strategies, respectively (see Fig. 2c). Our Bootstrap strategy mimics

a standard semi-naïve evaluation and also computes the computa-

tional state to allow subsequent updates. The Bootstrap strategy

either initiates the streaming or is a restart strategy for large up-

dates. Recall that the update strategy needs a computational state 𝜎 ,

which is maintained in each epoch. In previous approaches [26, 28],

this computational state involves a vector of numbers per tuple

in the IDB. Each number in the vector represents a count in some

fixpoint iteration. In the worst case, the length of the vector is

determined by the number of iterations𝑚 in the fixpoint computa-

tion. Hence, the state may exhibit a worst-case space complexity of

O(𝑚 |𝐼 |) where |𝐼 | is the size of the output.

Towards Elastic Incrementalization for Datalog PPDP 2021, September 6–8, 2021, Tallinn, Estonia

In contrast, our approach maintains a lightweight computational

state consisting of two numbers per tuple. The first number is a

derivation count, and the second number is the iteration in which

the tuple is first derived. The derivation count represents the num-

ber of ways that the tuple can be derived in the iteration when it

is first deduced and allows the reuse of computation in the next

epoch. Furthermore, our encoding is a sparse version of the vector

of numbers in previous approaches, keeping only the first itera-

tion rather than the whole vector. Therefore, the worst-case space

complexity of this encoding is O(|𝐼 |).
With our lightweight computational state 𝜎 , we can switch be-

tween Bootstrap and Update to adapt to lightweight and heavy-

weight updates accordingly. When given an incremental update,

we provide a heuristic for switching between both strategies. We

first attempt the Update strategy. If it times out (the timeout is set

to some fraction using a switching parameter of the previous Boot-
strap’s runtime strategy), we discard its partial state and produce

the output and computational state from scratch using Bootstrap.

The timeout is dependent on the application and needs to be fine-

tuned appropriately. In contrast, previous approaches have a single

strategy and cannot adapt to light and heavy updates.

We introduce some notation for describing our approach. We

define a sequence of sets ⟨𝐷1, 𝐷2, . . .⟩ where set 𝐷𝑘 denotes the set

of rule instantiations. Set 𝐷𝑘 = {(𝑡 :- 𝑡1, . . . , 𝑡𝑛)} contains all the
rule instantiations that are computed in iteration 𝑘 . The derivation

count of tuple 𝑡 in iteration 𝑘 is the number of rule instantiations

(𝑡 :- 𝑡1, . . . , 𝑡𝑛) whose head is 𝑡 .

For the sake of simplicity, we defineN#
as a sequence of counting

multisets for describing the derivation counts of tuples. We use the

standard definition of multisets, where each N#

𝑘
= {(𝑡 ↦→ 𝑐)}

denotes the number of rule instantiations 𝑡 :- 𝑡1, . . . , 𝑡𝑛 for tuple

𝑡 in 𝐷𝑘 . For notational convenience, we will express the elements

with multiplicities 𝑡 ↦→ 𝑐 as 𝑡𝑐 , and we use 𝑁𝑘 to denote the set

projection of N#

𝑘
.

3.1 Bootstrap Algorithm
The Bootstrap algorithm is a specialized counting algorithm that

efficiently computes the sequence of multisets from scratch, mimick-

ing a semi-naive evaluation while also producing the incremental

computation state.

For example, consider our running example. In the initial phase,

the input 𝐸 becomes iteration 0, where the counting semantics

mean that every tuple has a count of 1. Therefore,

N#

0
=


new(a, L1)1, new(c, L3)1, new(d, L4)1,
assign(a, b)1, assign(b, a)1, store(c, f, a)1,
load(e, d, f)1, load(b, c, f)1


In iteration 1, we apply the non-recursive rule r1. In this case,

all tuples have a count of 1:

N#

1
=
{
vpt(a, L1)1, vpt(c, L3)1, vpt(d, L4)1

}
In iteration 2, however, the counting semantics causes a diver-

gence from the standard semi-naïve evaluation. Recall that the

tuple vpt(b,L1) is derivable from two rules:

(1) vpt(b, L1) :- assign(b, a), vpt(a, L1), and
(2) vpt(b, L1) :- load(b, c, f), store(c, f, a),

vpt(a, L1), vpt(c, L3), vpt(c, L3)

Therefore, vpt(b, L1) has a count of 2 in iteration 2:

N#

2
=
{
vpt(b, L1)2

}
In iteration 3, no new tuples are derivable. Therefore, a fixpoint has

been reached, and the Datalog evaluation ends.

The bootstrap algorithm is illustrated in Algorithm 2. The main

extension from the standard semi-naïve evaluation (Algorithm al-

gorithm generatesN#
, the sequence of multisets, in contrast to the

standard sets in standard semi-naïve. To compute these multisets,

we first introduce a version of the rule evaluation operator that

computes sets of rule instantiations:

Π𝐷
𝑃 [𝐼 | 𝐼in] ={
(𝑡 :- 𝑡1, . . . , 𝑡𝑛)

���� 𝑡 :- 𝑡1, . . . , 𝑡𝑛 in 𝑃 where {𝑡1, . . . , 𝑡𝑛} ⊆ 𝐼

and {𝑡1, . . . , 𝑡𝑛} ∩ 𝐼in ≠ ∅

}
From the Π𝐷

𝑃
operator, we can define a counting version:

Π#

𝑃 [𝐼 | 𝐼in] ={
𝑡𝑣

�� 𝑣 = #rule instantiations (𝑡 :- 𝑡1, . . . , 𝑡𝑛) ∈ Π𝐷
𝑃
[𝐼 | 𝐼in]

}
where 𝑣 is the number of ways that the tuple 𝑡 can be derived.

Algorithm 2 presents the lightweight bootstrap algorithm for

a single stratum. Its structure is almost identical to the standard

semi-naïve evaluation algorithm. The main difference for Bootstrap

is that it maintains a separate sequence of multisets N#
, where

each N#

𝑘
is similar to Δ𝑘 of semi-naïve, and contains all the new

tuples computed in iteration 𝑘 . The algorithm begins by initializing

N#

0
to be equal to 𝐸 (line 1). In the fixpoint loop, the algorithm first

creates a set projection of the current iteration’s multiset (line 3),

where the operator taking the support of a multiset is defined

as Supp(N#

𝑘−1) = {𝑡 | (𝑡
𝑐) ∈ N#

𝑘−1 and 𝑐 > 0}. In other words,

Supp(N) is the set projection of tuples in N0. The algorithm also

computes the full state of the relations up to iteration 𝑘 − 1 (line 4),
in the same way as the semi-naïve algorithm. These two auxiliary

sets, 𝑁𝑘−1 and 𝐼𝑘−1, are used in the rule evaluation on line 5. This

rule evaluation computes all tuples that are new in the current

iteration, and excludes any tuples that were computed in earlier

iterations. By excluding existing tuples, the algorithm maintains

the sparsification property, exhibiting a space complexity of O(|𝐼 |).
The algorithm exits and returns the evaluation state (𝐸,N#) (line 6)
if no new tuples are generated in the current iteration, which is

checked via the emptiness of the set projection of N#

𝑘
.

Algorithm 2 Bootstrap(𝐸)

1: N#

0
← {(𝑡1) | 𝑡 ∈ 𝐸}

2: for all 𝑘 ∈ {1, 2, . . .} do
3: 𝑁𝑘−1 ← Supp(N#

𝑘−1)
4: 𝐼𝑘−1 ← ∪0≤𝑖≤𝑘−1𝑁𝑖

5: N#

𝑘
← {(𝑡𝑣) ∈ Π# [𝐼𝑘−1 | 𝑁𝑘−1] | 𝑡 ∉ 𝐼𝑘−1}

6: if Supp(N#

𝑘
) = ∅ then

7: return (𝐸,N#)

PPDP 2021, September 6–8, 2021, Tallinn, Estonia David Zhao, Mukund Raghothaman, Pavle Subotić, and Bernhard Scholz

Correctness. To demonstrate the correctness of Algorithm 2, we

need to show that it computes the same resulting set of tuples as

standard semi-naïve evaluation (Algorithm 1). To do this, we need

to demonstrate two basic properties: (a) each 𝑁𝑘 of Bootstrap is

equal to Δ𝑘 of semi-naïve, and (b) both Bootstrap and semi-naïve

evaluation terminate after the same number of iterations.

To show this, we introduce the following lemma:

Lemma 3.1. Given a Datalog program 𝑃 , for all 𝐴, 𝐵 such that
𝐵 ⊆ 𝐴, Supp(Π#

𝑃
[𝐴 | 𝐵]) = Π𝑃 [𝐴 | 𝐵].

This property can be shown since a tuple 𝑡 ∈ Π𝑃 [𝐴 | 𝐵] if and
only if there is a rule instantiation that computes it. If this is the

case, then the same rule instantiation also fits Π#

𝑃
[𝐴 | 𝐵] with a

count of at least one. As a corollary, we can show that Bootstrap and

semi-naïve both produce the same set of tuples in each iteration.

Lemma 3.2. Given a Datalog program 𝑃 and an input set 𝐸, each
𝐼𝑘−1 of Bootstrap is equal to 𝐼𝑘−1 of semi-naïve.

The proof is by induction over 𝑘 , since Supp(N#

𝑖
) = Δ𝑖 (from

Lemma 3.1) for each iteration 𝑖 , then each iteration’s result must be

identical to semi-naïve. Note that both Bootstrap and semi-naïve

terminate after the same number of iterations since Supp(N#

𝑖
) = Δ𝑖

for every iteration 𝑖 , and therefore Supp(N#

𝑖
) = ∅ if and only if

Δ𝑖 = ∅. Therefore, both algorithms terminate after the same number

of iterations and thus produce the same set of resulting tuples.

3.2 Incremental Update Algorithm
The Update algorithm is a procedure that takes a computational

state, either computed by Bootstrap or by a previous Update, and

a set of changes to the inputs. The algorithm returns the updated

computational state after applying the input changes.

The Update algorithm produces a computational state N#

𝑘
from

the computational state N𝑜
𝑘
of the previous epoch, following the

iterations of the previous epoch’s fixpoint. In each iteration, the

algorithm applies the insertions and deletions resulting from the

given changes to the input.

For example, consider the running example, where we remove

assign(b, a) and insert store(d, f, c). Iteration 0 reflects these up-

dates:

N#

0
=


new(a, L1)1, new(c, L3)1, new(d, L4)1,
assign(a, b)1, store(d, f, c)1, store(c, f, a)1,
load(e, d, f)1, load(b, c, f)1


In iteration 1, the inputs for the non-recursive rule (i.e., the relation

new) don’t change, thus

N#

1
=
{
vpt(a, L1)1, vpt(c, L3)1, vpt(d, L4)1

}
In iteration 2, however, the deletion of assign(b, a) means that

vpt(b, L1) is no longer derivable from the rule

vpt(b,L1) :- assign(b,a), vpt(a,L1)

Meanwhile, the insertion of store(d, f, c) means that a new tuple,

vpt(e, L3), can now be derived from

vpt(e,L3) :- load(e,d,f), store(d,f,c),
vpt(c,L3), vpt(d,L4), vpt(d,L4)

Therefore, the diff in iteration 2 can be expressed as

{vpt(b, L1)−1, vpt(e, L3)+1}

The result for iteration 2 after applying this diff is

N#

2
=
{
vpt(b, L1)1, vpt(e, L3)1

}
At this point, no new tuples can be further derived, either by

tuples that already existed previously or by tuples that are newly

inserted. Therefore, a fixpoint is reached, and the evaluation termi-

nates.

Our novel sparse computational state requires some notion of

re-discovery since a tuple only exists in the first iteration. If a tuple

is deleted in its first iteration, it may still be derivable in a later

iteration. In this case, the Update algorithm re-discovers whether

the tuple is either derived in a later iteration or is truly deleted from

the IDB. This re-discovery process is a notion of provenance [9, 46],

where we find derivations for tuples that are deleted in earlier

iterations.

The incremental update algorithm introduces extended notation

over Bootstrap. The rule evaluation notation, Π𝑃 [𝐼 | 𝐼in], denotes
tuples resulting from rules in 𝑃 instantiated from 𝐼 , with at least

one body tuple also in 𝐼in. This is extended with

Π#

𝑃 [𝐼 | 𝐼1 | 𝐼2] ={
𝑡𝑣

����� 𝑣 = number of rule instantiations 𝑡 :- 𝑡1, . . . , 𝑡𝑛
in 𝑃 where {𝑡1, . . . , 𝑡𝑛} ⊆ 𝐼 and {𝑡1, . . . , 𝑡𝑛} ∩ 𝐼1 ≠ ∅
and {𝑡1, . . . , 𝑡𝑛} ∩ 𝐼2 ≠ ∅

}
This notation derives tuples from rule instantiations where at

least one body tuple is from 𝐼1, and also at least one body tuple is

from 𝐼2. In Update, 𝐼1 and 𝐼2 would be the deltas from semi-naïve

evaluation and the diffs from the incremental update, respectively,

allowing the rule evaluation to compute newly changed tuples in

the current iteration of the current epoch. Additionally, the algo-

rithm uses ⊕ and ⊖, the standard multiset addition and subtraction

operators for operations involving multisets.

The update algorithm computes the updates to the sequence

of multisets N#
, which result from applying the insertions and

deletions to the input. The algorithm also makes use of a number

of auxiliary sets: 𝐼𝑜
𝑘
and 𝐼𝑘 maintain the full sets of tuples up to

iteration 𝑘 for the previous and current epoch respectively, 𝐼−
𝑘
and

𝐼+
𝑘
maintain the tuples that are deleted and inserted respectively up

to iteration 𝑘 , and 𝑁𝑜
𝑘
and 𝑁𝑘 are the set projections of N#𝑜

𝑘
and

N#

𝑘
, storing the tuples that are new in iteration 𝑘 in the previous

and current epoch, respectively.

Algorithm 3 is presented for a single stratum and takes the

state of the previous epoch (𝐸,N#𝑜), and the incremental update

(𝐸−, 𝐸+) consisting of a set of tuples to be deleted and a set of tuples
to be inserted, respectively. Note thatN#

may be the IDB sequence

from the bootstrap stage or the result of a previous incremental

update. The algorithm begins by initializing the input state by

applying 𝐸− and 𝐸+, and storing the result in N#

0
(line 3). Then,

the algorithm initializes the sets 𝐼−
0
and 𝐼+

0
to be the updates in

iteration 0.

In the fixpoint loop, the rule evaluation on line 10 is the core part

of this algorithm. This step starts with the multiset of tuples from

the previous epoch and applies deletions and insertions resulting

from applying Datalog rules with the insertions and deletions for

the current epoch. This step is split into three terms: the deletion

term, the insertion term, and the re-discovery term. The deletion

term, Π# [𝐼𝑜
𝑘−1 | 𝑁

𝑜
𝑘−1 | 𝐼

−
𝑘−1] \ 𝐼

𝑜
𝑘−1, computes tuples that are

Towards Elastic Incrementalization for Datalog PPDP 2021, September 6–8, 2021, Tallinn, Estonia

Algorithm 3 Update((𝐸,N#𝑜), (𝐸−, 𝐸+))
Ensure: 𝐸− ⊆ 𝐸, 𝐸 ∩ 𝐸+ = ∅
1: N#

0
← 𝐸 \ 𝐸− ∪ 𝐸+

2: 𝑁𝑘−1 ← Supp(N#

𝑘−1)
3: 𝑁𝑜

𝑘−1 ← Supp(N#𝑜
𝑘−1)

4: 𝐼−
0
← 𝐸−

5: 𝐼+
0
← 𝐸+

6: for all 𝑘 ∈ {1, 2, . . .} do
7: 𝐼𝑘−1 ← ∪0≤𝑖≤𝑘−1𝑁𝑖

8: 𝐼𝑜
𝑘−1 ← ∪0≤1≤𝑘−1𝑁

𝑜
𝑖

9: ⊲ Here, A \ 𝐵 denotes {(𝑡𝑣) ∈ A | 𝑡 ∉ 𝐵}
10: N#

𝑘
← N#𝑜

𝑘
⊖(Π# [𝐼𝑜

𝑘−1 | 𝑁
𝑜
𝑘−1 | 𝐼

−
𝑘−1] \ 𝐼

𝑜
𝑘−1)

⊕(Π# [𝐼𝑘−1 | 𝑁𝑘−1 | 𝐼+𝑘−1] \ 𝐼𝑘−1)
⊕(𝐼−

𝑘−1 ∩ Π# [𝐼𝑜
𝑘−1 ∩ 𝐼𝑘−1 | 𝑁𝑘−1] \ 𝐼𝑘−1)

11: N#

𝑘
← {(𝑡𝑣) ∈ N#

𝑘
| 𝑡 ∉ 𝐼+

𝑘−1}
12: 𝑁𝑘 ← Supp(N#

𝑘
)

13: 𝑁𝑜
𝑘
← Supp(N#𝑜

𝑘
)

14: 𝐼−
𝑘
← (𝐼−

𝑘−1 \ 𝑁𝑘) ∪ (𝑁𝑜
𝑘
\ 𝐼𝑘)

15: 𝐼+
𝑘
← (𝐼+

𝑘−1 \ 𝑁
𝑜
𝑘
) ∪ (𝑁𝑘 \ 𝐼𝑜𝑘)

16: if Supp(N#

𝑘
) = ∅ then

17: return (𝐸 \ 𝐸− ∪ 𝐸+,N#)

deleted in the current iteration as a result of a derivation where

the body contains both a tuple in the delta (𝑁𝑜
𝑘−1) and a deleted

tuple (𝐼−
𝑘−1). The set minus notation excludes tuples that were in

earlier iterations in the previous epoch, preventing over-deletion

since the tuples would not be present in the current iteration due

to sparsification. The insertion term, Π# [𝐼𝑘−1 | 𝑁𝑘−1 | 𝐼+𝑘−1] \
𝐼𝑘−1, computes tuples that are inserted as a result of the body of a

derivation containing an inserted tuple. Tuples that already exist

in previous iterations (i.e., tuples that are contained in 𝐼𝑘−1) are
excluded to maintain the sparsification invariant. The re-discovery

term, 𝐼−
𝑘−1∩Π[𝐼

𝑜
𝑘−1∩𝐼

𝑛
𝑘−1 | 𝑁𝑘−1], computes tuples that are deleted

in previous iterations 𝐼−
𝑘−1, but where an alternative derivation

exists in the current iteration. This re-discovery rule applies in the

situation where a tuple is deleted from some iteration but can still

be derived in a later iteration. In this case, the re-discovery term

computes this later derivation.

The sparsification term (line 11) does not perform any rule eval-

uation but excludes tuples from iteration 𝑘 that were inserted in

an earlier iteration (as a result of a new derivation). These tuples

should be deleted to maintain the sparsification invariant that a

tuple is only present in a single iteration in any given epoch.

The algorithm continues by updating the 𝐼−
𝑘
and 𝐼+

𝑘
sets (lines 14

and 15). Computing 𝐼−
𝑘
(line 14) takes the deletion set from the

previous iteration 𝐼−
𝑘−1 and excludes the tuples that are newly com-

puted in the current iteration 𝑁𝑘 , along with tuples that are deleted

in the current iteration (𝑁𝑜
𝑘
\ 𝐼𝑛

𝑘
). Similarly, computing 𝐼+

𝑘
(line 15)

takes the insertion set from the previous iteration and excludes

tuples that already existed in the current iteration in the previous

epoch (since these tuples already existed, so are not newly inserted

in the current epoch), along with tuples that are inserted in the

current iteration.

The algorithm exits if we have reached a fixpoint and the current

iteration is identical to the previous iteration, i.e., if N#

𝑘
is empty

(checked via emptiness of the set projection, in line 16).

Correctness. To show the correctness of our incremental update

algorithm, we must show that it computes the same sequence of

multisets as if we had applied Bootstrap to the altered input. In

other words, we need to show that given a Datalog program 𝑃 , an

input set 𝐸, a deletion set 𝐸− and an insertion set 𝐸+, computing

the result directly via Bootstrap(𝐸𝑏 = 𝐸 \ 𝐸− ∪ 𝐸+) is equal to
Update(Bootstrap(𝐸), (𝐸−, 𝐸+)). The central parts of the algorithm
computing these results are lines 10 and 11. Before the final correct-

ness proof, we need some intermediate properties of the 𝑁𝑘 sets

and the 𝐼− and 𝐼+ sets. The following important properties are that

the validity properties of the 𝐸 sets (i.e., that 𝐸+∩𝐸 = ∅ and 𝐸− ⊆ 𝐸)

also hold for the 𝐼𝑜 , 𝐼−, and 𝐼+ sets during the incremental update

algorithm. Similar properties relating 𝐼− and 𝐼+ sets to the current

epoch’s 𝐼 sets are also required. The eventual goal is to show that

𝐼𝑘 = 𝐼𝑜
𝑘
\ 𝐼−

𝑘
∪ 𝐼+

𝑘
for each iteration 𝑘 , which is an important result

for showing the correctness of the rule evaluations.

Lemma 3.3. For each iteration 𝑘 , we have (1) 𝐼−
𝑘
⊆ 𝐼𝑜

𝑘
and

𝐼−
𝑘
∩ 𝐼𝑘 = ∅, and (2) 𝐼+

𝑘
∩ 𝐼𝑜

𝑘
= ∅ and 𝐼+

𝑘
⊆ 𝐼𝑘 .

To sketch the proof for this property, we perform an induction

over the iterations. The base case holds because of the definition of

𝐼−
0
and 𝐼+

0
. Then, for each subsequent iteration, consider line 14 of

Algorithm 3. Here, 𝐼−
𝑘
takes the value of (𝐼−

𝑘−1\𝑁𝑘)∪(𝑁𝑜
𝑘
\𝐼𝑘). In the

first part of the union, the property holds for 𝐼−
𝑘−1 by the induction

hypothesis. In the second part of the union, 𝑁𝑜
𝑘
is a subset of 𝐼𝑜

𝑘
by definition. Therefore, 𝐼−

𝑘
⊆ 𝐼𝑜

𝑘
. By similar arguments on line 15,

𝐼+
𝑘
⊆ 𝐼𝑘 . The second part of the property, i.e., that 𝐼−

𝑘
∩ 𝐼𝑘 = ∅ can

be shown by a similar induction argument, again consider line 14.

As a corollary, we can show that the 𝐼− and 𝐼+ sets are correct.

Corollary 3.4. For each iteration 𝑘 , we have 𝐼𝑘 = 𝐼𝑜
𝑘
\ 𝐼−

𝑘
∪ 𝐼+

𝑘
.

It remains to be shown that Update is correct. Our criteria for

correctness is that it computes the same sequence of multisets as if

we had applied the bootstrap algorithm to the updated input, i.e.,

that the multisets N#

𝑖
as computed by Update and Bootstrap are

the same for each iteration 𝑖 . The following is the central theorem

for our correctness proof.

Theorem 3.5. Given 𝑃 , 𝐸, 𝐸−, and 𝐸+ as above, N#

𝑖
as computed

by Update(Bootstrap(𝐸), (𝐸−, 𝐸+)) is equal to N#

𝑖
as computed by

Bootstrap(𝐸 \ 𝐸− ∪ 𝐸+) for each iteration 𝑖 .

The proof of Theorem 3.5 is by induction over the iterations,

and in each step, it considers all four parts of lines 10 and 11. By

arguments over which sets each tuple is contained in, and careful

consideration of the subset relationships between them, we can

show that the counting multisets are the same as those produced

by Bootstrap.

Sparsification. Another essential property of our elastic incre-

mental evaluation strategy is the sparsification invariant.

Lemma 3.6 (Sparsification Invariant). For each iteration 𝑘 , the
sets 𝑁𝑘 are disjoint.

PPDP 2021, September 6–8, 2021, Tallinn, Estonia David Zhao, Mukund Raghothaman, Pavle Subotić, and Bernhard Scholz

This property ensures that every tuple is only computed in a

single iteration, with this iteration being the earliest one in which

it is computed.

Re-discovery rules as a notion of provenance. The re-discovery
term in the rule evaluation part of Algorithm 3 (the last term in

line 10) is critical for maintaining the sparsification property of our

algorithm. In particular, a tuple may be deleted in some iteration but

still be derivable in a later iteration via a different rule or different

body tuples. The re-discovery term allows the algorithm to recover

these tuples in the later iteration.

The re-discovery is performed by the rule evaluation term 𝐼−
𝑘−1∩

Π[𝐼𝑜
𝑘−1 ∩ 𝐼

𝑛
𝑘−1 | 𝑁𝑘−1], which states that we compute tuples that

were deleted in an earlier iteration (i.e., exist in 𝐼−
𝑘−1), but an alterna-

tive derivation exists in the current iteration (Π[𝐼𝑜
𝑘−1∩𝐼

𝑛
𝑘−1 | 𝑁𝑘−1]).

Provenance can be defined as “discovering the derivations for

a tuple”. Similarly, the re-discovery term discovers derivations in

the current iteration for tuples that were deleted in earlier itera-

tions. In particular, for each tuple deleted in an earlier iteration, the

re-discovery term finds derivations from 𝐼𝑜
𝑘−1 ∩ 𝐼

𝑛
𝑘−1. Since this pro-

cess resembles provenance, we adapt the backward rule evaluation

techniques from [46] to compute the re-discovery rules.

3.3 Stratified Negation and Constraints
Our algorithms thus far have omitted any notion of negation or

constraints. However, both negation and constraints are powerful

and common extensions of Datalog. Constraints are a simpler case

than negation, and may take the form of arithmetic constraints

such as A < B or A != B where A and B are grounded variables (i.e.,

variables also occurring in a positive body predicate) or constants.

In an instantiated rule, a constraint is satisfied if the instantiated

arithmetic constraint is satisfied. For example,

alias(Var1,Var2) :- vpt(Var1,Obj), vpt(Var2,Obj),
Var1 != Var2

is a rule with arithmetic constraints, and an instantiation of the

rule only derives a tuple if the inequality constraint is satisfied by

the values given to Var1 and Var2.
Negation is more complicated than simple arithmetic constraints.

Syntactically, negations are denoted as a negated predicate with

the ! symbol. For example, the rule

path(X,Z) :- edge(X,Y), path(Y,Z), !edge(X,Z)

computes all the paths in a graph that are not direct edges. A negated

predicate must contain only grounded variables or constants, and a

negated predicate is satisfied if and only if the corresponding tuple

(resulting from an instantiation) is not computable. In this work,

we target the standard semantics for negation in Datalog: stratified
negation. In this semantics, recursive negation is not permitted, and

any negated predicates must be of a relation from either input or a

previous stratum.With this semantics, a negated predicate is similar

to a constraint, where a simple check of the input for a stratum is

needed to determine whether the negation is satisfied. However, the

truth value of a negation may change due to tuples being inserted

or deleted from the negated relation, unlike constraints which do

not change truth value after an incremental update. To adapt our

Datalog evaluation algorithms to support stratified negation and

constraints, the rule evaluation is extended to support these features.

The rule evaluation operator, Π#
is extended so that

Π#

𝑃 [𝐼 | 𝐼in] =𝑡𝑣
������ 𝑣 = #instantiations 𝑡 :- 𝑡1, . . . , 𝑡𝑛, !𝑡𝑛+1, . . . , !𝑡𝑛+𝑚,𝜓

in 𝑃 where {𝑡1, . . . , 𝑡𝑛} ⊆ 𝐼 , {𝑡1, . . . , 𝑡𝑛} ∩ 𝐼in ≠ ∅,
{𝑡𝑛+1 . . . 𝑡𝑛+𝑚} ∩ 𝐼 = ∅, and𝜓 is satisfied


where𝜓 denotes the instantiated arithmetic constraints occur-

ring in the rule. Replacing the rule evaluation operator in Bootstrap

(Algorithm 2) with this extended version allows the algorithm to

support stratified negation and constraints. However, the exten-

sion is more involved for Update since introducing negation also

introduces new cases for deleting/inserting tuples. For example,

consider the rule

path(X,Z) :- edge(X,Y), path(Y,Z), !edge(X,Z).

If we have a rule instantiation

path(a,c) :- edge(a,b), path(b,c), !edge(a,c)

where edge(a,c) is inserted as a result of an incremental update,

then the head tuple path(a,c) must be deleted since the negation

is no longer satisfied. The opposite situation may arise where the

deletion of a tuple may lead to the consequent insertion of a tuple.

Therefore, we further extend the rule evaluation operator so that

Π#

𝑃 [𝐼 | 𝐼1 | 𝐼2, 𝐼
′
2
] =𝑡

𝑣

��������
𝑣 = #instantiations 𝑡 :- 𝑡1, . . . , 𝑡𝑛, !𝑡𝑛+1, . . . , !𝑡𝑛+𝑚,𝜓

in 𝑃 where {𝑡1, . . . , 𝑡𝑛} ⊆ 𝐼 , {𝑡1, . . . , 𝑡𝑛} ∩ 𝐼1 ≠ ∅,
{𝑡𝑛+1 . . . 𝑡𝑛+𝑚} ∩ 𝐼 = ∅,𝜓 is satisfied, and

({𝑡1, . . . , 𝑡𝑛} ∩ 𝐼2 ≠ ∅ or {𝑡𝑛+1 . . . , 𝑡𝑛+𝑚} ∩ 𝐼 ′
2
≠ ∅)


With this rule evaluation operator, a new tuple is derived if the

rule instantiation contains body tuples from 𝐼 , where at least one

positive body tuple is also in 𝐼1, and either there is a positive body

tuple in 𝐼2 or a negative body tuple in 𝐼 ′
2
. Using this notation, the

rule evaluation step of Algorithm 3 (line 10) becomes

N#

𝑘
← N#

𝑘
⊖ (Π# [𝐼𝑜

𝑘−1 | 𝑁
𝑜
𝑘−1 | 𝐼

−
𝑘−1, 𝐼

+
0
] \ 𝐼𝑜

𝑘−1)
⊕ (Π# [𝐼𝑘−1 | 𝑁𝑘−1 | 𝐼+𝑘−1, 𝐼

−
0
] \ 𝐼𝑘−1)

⊕ (𝐼−
𝑘−1 ∩ Π[𝐼𝑜

𝑘−1 ∩ 𝐼𝑘−1 | 𝑁𝑘−1])
where the first and second terms now handle stratified negation.

The deletion term, Π# [𝐼𝑜
𝑘−1 | 𝑁

𝑜
𝑘−1 | 𝐼

−
𝑘−1, 𝐼

+
0
] \ 𝐼𝑜

𝑘−1, now computes

tuples that are deleted, either as a result of a deleted positive body

tuple (𝐼−
𝑘−1) or an inserted negated body tuple (𝐼+

0
). We use iteration

0 for the negated tuples since stratified negation enforces that

negations must be from the input of the current stratum. Similarly,

the insertion term, Π# [𝐼𝑛
𝑘−1 | 𝑁𝑘−1 | 𝐼+𝑘−1, 𝐼

−
0
] \ 𝐼𝑛

𝑘−1, computes

tuples that are inserted either as a result of an inserted positive

body tuple or a deleted negative body tuple. The other parts of the

algorithms involve manipulating and merging relations and are

independent of the Datalog rules. Therefore, no changes are needed

to support negation or constraints. Hence, with the extensions to

the rule evaluation presented above, our algorithms fully support

Datalog with stratified negation and constraints.

4 INTEGRATION INTO SOUFFLÉ
In this section we outline how are approach is integrated in the Souf-

flé Datalog engine, including several optimizations for incremental

evaluation.

Towards Elastic Incrementalization for Datalog PPDP 2021, September 6–8, 2021, Tallinn, Estonia

4.1 Core Implementation
Specialized data structures. Soufflé internally uses highly special-

ized, parallel B-tree data structures to store relations. For incremen-

tal evaluation, we associate each tuple with an iteration number

and a count. Therefore, we must extend the internal data structures

to allow for these auxiliary attributes. Importantly, these auxiliary

attributes may be updated, e.g., if a new derivation is discovered,

the count must be incremented. Thus, we implemented an update

mechanism, and adapted the existing optimistic locking mechanism

to support parallel operation.

Auxiliary relations. Auxiliary relations are necessary to repre-

sent the tuples that are inserted or deleted in Algorithm 3. These

auxiliary relations are represented by separate instantiations of

the original relations, with prefixes diff_plus and diff_minus,
respectively. These diff_plus and diff_minus relations are not
exact analogs of 𝐼+ and 𝐼−, since diff_plus and diff_minus may

contain tuples where the derivation count is incremented/decre-

mented, rather than only tuples that are fully inserted/deleted.

Rule evaluation. We extend the operations used in standard rule

evaluation algorithms in Soufflé to support the extra operations

required by the incremental evaluation algorithms. Soufflé uses

nested loop joins for evaluating rules, which incorporate extra con-

ditions and existence checks to ensure correctness. For incremental

evaluation, further specialized existence checks are required, e.g., a

tuple in diff_minus may not actually be deleted, and only one of

its derivations is deleted. Therefore, we need a specialized existence

check that uses its count in the full relation to determine if the tuple

is fully deleted or not. The Datalog rules are then instrumented for

incremental evaluation using these extra operations and auxiliary

relations. Moreover, separate versions of rule instrumentation are

required for the Bootstrap and Update algorithms.

Other operations. Other operations, such as merges between iter-

ations and a cleanup operation between epochs, are also required,

along with the rule evaluation extensions. In standard semi-naïve

evaluation, at the end of each iteration, new tuples computed in that

iteration are merged into the full relation, and this also becomes

the delta for the following iteration. For incremental evaluation,

further operations may take place, e.g., eager computation of the

delta of the previous epoch, and eager computation of diff_plus
and diff_minus. In between epochs, the incremental evaluation

algorithms also require a cleanup stage, where the diff_plus and

diff_minus relations are merged into the full relations to update

the state in preparation for the following epoch.

4.2 Optimizations
Eager vs. lazy diff_plus and diff_minus. The diff_plus and

diff_minus relations store tuples that are inserted and deleted in

the current epoch, respectively. However, there is extra compu-

tation involved with the diff_plus and diff_minus relations in
lines 14 and 15 of Algorithm 3. Here, a tuple in diff_plusmay not

actually be newly inserted - it may be a new derivation for a tuple

that already existed. Similarly, a tuple in diff_minusmay not actu-

ally be deleted - an alternative derivation may still hold. Thus, we

need to check the full relation to determine if a tuple in diff_plus
or diff_minus is actually inserted or deleted, respectively. This

check may be performed eagerly during the merge step in each iter-

ation, with results stored in separate relations actual_diff_plus
and actual_diff_minus, or lazily inside the rule evaluation. For

the sake of clarity, our algorithms are presented with eager diff com-

putations, which can be seen in lines 14 and 15. A lazy diff version

would incorporate this computation directly in the rule evaluation.

This design decision is a trade-off: eagerly computing diff_plus
and diff_minus may result in wasted computation for tuples that

are not considered in any rules, while lazy computation may mean

the same check of the full relation is performed multiple times for

a single tuple, if it occurs in multiple rule derivations. However,

our experiments indicate that this trade-off generally favors ea-

ger diffs, where it can amortize the checks for tuples that occur

in multiple rule derivations. For our benchmarks, the difference

is generally within 15% in favor of eager diffs, but it can provide

up to 4× speed up in some situations where tuples are frequently

repeated in multiple rule derivations.

Filtering for re-discovery rules. The elastic algorithm includes the

notion of re-discovery, which is required due to its sparsification.

In the re-discovery rules, the algorithm finds all tuples which have

been deleted in an earlier iteration but where an alternative deriva-

tion still exists for the current iteration. Naïvely, this could be done

by instrumenting a rule to filter on diff_minus:

R :- diff_minus_R, R1, . . . , R𝑘 .

However, in some cases this can cause a problematic join, if there

are few variables in common between the diff_minus_R atom and

the remaining atoms. For example,

R(𝑥,𝑦, 𝑧) :- diff_minus_R(𝑥,𝑦, 𝑧), R1 (𝑥, 𝑎), R2 (𝑦, 𝑎), R3 (𝑧, 𝑎).

may cause duplication of work in R1 (𝑥, 𝑎) if there are many

tuples in diff_minus_R with the same 𝑥 value. Our solution is to

divide the diff_minus relation so that it never causes extra work.

R(𝑥,𝑦, 𝑧) :- diff_minus_R𝑥 (𝑥), R1 (𝑥, 𝑎), R2 (𝑦, 𝑎),
diff_minus_R𝑦 (𝑦), R3 (𝑧, 𝑎), diff_minus_R𝑧 (𝑧).

Dividing the diff_minus relations ensures that each variable

only acts as a filter and cannot multiply the work of the other

atoms in the rule. Here, the 𝑥 variable is scheduled first since we

assume that diff_minus_R𝑥 (𝑥) is smaller than R1 (𝑥, 𝑎). However,
the other variables must be scheduled after their corresponding

atom to prevent a cross-product with the previous atom.

This strategy of considering the variables in the filtering atom

is inspired by worst-case optimal joins [32, 45]. These worst-case

optimal join algorithms work by considering the variables in the

atoms in some order, in contrast to traditional nested loop join

algorithms that consider an atom order. For our re-discovery rules,

this variable-based approach is used only for the filtering atom since

the filtering atom is often performance-critical. Our benchmarks

show that this technique is generally 2.5× faster than the naïve

strategy, while in some situations it can be up to 15× faster.

Scheduling. Scheduling for join orders plays a vital role in the

performance of Datalog rules [21, 38, 39]. With incremental evalua-

tion, the assumption that the diffs are smaller than the full relations

allows for better heuristics for automatic scheduling. Using this

assumption, scheduling diff_plus or diff_minus first in a rule

PPDP 2021, September 6–8, 2021, Tallinn, Estonia David Zhao, Mukund Raghothaman, Pavle Subotić, and Bernhard Scholz

evaluation generally improves performance by restricting the size

of the search as early as possible. However, care must be taken to

avoid cross-products. For example, consider the following rule:

R(𝑎, 𝑑) :- R1 (𝑎, 𝑏), R2 (𝑏, 𝑐), diff_minus_R3 (𝑐, 𝑑) .

In this case, moving diff_minus_R
3
(𝑐, 𝑑) to the front of the

rule would create a cross-product with R1 (𝑎, 𝑏) and may lead to

worse performance than the original schedule. Hence, using simple

automatic scheduling techniques, such asmaximizing the number of

bound variables in each atom, is crucial tomaintain the performance

of incremental evaluation.

5 EXPERIMENTAL EVALUATION
This experimental section aims to demonstrate the following claims:

• Claim I: Inviability of single incremental evaluations on

variable update use cases.

• Claim II: The elastic incremental evaluation with a simple

switch heuristic performs better compared to existing single

strategy incremental evaluations, both in terms of runtime

andmemory usage, over a series of varying sized incremental

updates.

Experimental Setup. Our experiments are run on anAMDThread-

ripper 2990WX machine with 128 GB memory, running Ubuntu

20.10 with GCC 10.2 used to generate all Soufflé executables. All

experiments are run with 8 threads, and all I/O time is excluded

from measurements.

We evaluate three versions of Soufflé: (1) Soufflé: Non-Incremental

Soufflé engine. (2) Soufflé-counting: A baseline counting incremen-

tal algorithm, similar to DDLog, implemented and optimized for

Soufflé. (3) Soufflé-elastic: The implementation of the technique

presented in this paper. When necessary, we differentiate between

elastic-update and elastic-bootstrap algorithms.

We also compare our approach to an industrial-strength incre-

mental Datalog engine, Differential Datalog (DDLog) [36], which

uses Differential Dataflow [26] as a backend. DDLog with Differ-

ential Dataflow is a state-of-the-art incremental engine that uses a

variant of the counting algorithm.

We perform our evaluations using a set of dynamic Datalog use

cases adapted by Frank McSherry
1
for benchmarking incremental

Datalog engines. The use cases are described below:

(1) Doop [8]: a points-to program analysis framework for Java

programs. This is a subset of the Doop program analysis

library ported to DDLog. This use case contains a large num-

ber of rules and relations with complex recursion.

(2) CRDT: an implementation of a conflict-free replicated data

type in Datalog. This use case represents an in-between

ruleset with a medium number of rules, relations of moderate

complexity, and arithmetic constraints.

(3) Galen [34]: a medical ontology inference task implemented

in Datalog. This use case represents a typical ontological

use case consisting of a small number of rules and relations

with a simple recursive structure. However, the joins can be

challenging in Galen.

1
https://github.com/frankmcsherry/dynamic-datalog

Some basic statistics for the benchmarks are included in Table 1.

To evaluate the performance of incremental evaluation algorithms,

we generated update sets of varying sizes for each benchmark by

randomly choosing a subset of EDB tuples that are incrementally

deleted and inserted.

Table 1: Benchmark Statistics

Benchmark Number of rules EDB size IDB size

Doop 90 11,014,960 41,665,029

CRDT 31 259,778 2,668,247

Galen 6 976,552 24,483,561

5.1 Single Strategy Incremental Evaluation
In this set of experiments we only consider single strategy evalua-

tions, that is, we only include our Update (elastic-update) evaluation

and thus do not switch to Bootstrap. In these experiments we do

not establish the supremacy of any one technique. Rather, we show

that single strategies are not viable compared to non-incremental

evaluation. The results for the runtime of incremental updates for

each evaluation implementation are shown in Fig. 5, while the im-

pact sizes are in Table 2. These results are computed for one cycle
of an update set. An update set is a randomly selected subset of

EDB tuples. A cycle consists of one epoch where the update set is

deleted, followed by one epoch where the update set is inserted.

The horizontal line on each benchmark represents the runtime if

non-incremental Soufflé performs the same task, i.e., running the

whole benchmark twice from scratch. For each benchmark, there is

a general trend that larger updates require more runtime. However,

this performance is highly unpredictable, even if the size of the

incremental update is constant.

Consider the performance of incremental evaluation for Doop

in Fig. 5a. Here, there are five separate small update sets, which are

each generated by randomly choosing 10 EDB tuples and running

one cycle. These small updates all finished within two seconds,

which is vastly faster than non-incremental Soufflé. For these small

incremental updates all evaluations were very fast on average due

to their very low impact, only affecting up to 25 of the IDB tuples.

DDlog and elastic-update performed well and on par. Our general

observation is that incremental evaluation is highly effective for

these lightweight updates. For the 100 update size, the smallest

impact was 88 IDB tuples, and the largest impact was 53,816 IDB

tuples. As anticipated, this increased the variability of the results.

Elastic-update exhibited large extremities, finishing within 5 sec-

onds for the fastest, while more than 5,000 seconds for two update

sets. DDLog also had high variance, with the fastest runtime be-

ing 5 seconds and the slowest being 213 seconds, well over the

non-incremental engine time. Curiously, the fastest incremental

update was also one of the higher impact ones, affecting 22,347 IDB

tuples, while the slowest affected 140 IDB tuples, indicating that

neither the size of the EDB updates nor the size of the impact is

always helpful in predicting the runtime of the incremental update.

While Soufflé-counting was generally faster than DDLog, it still

exhibited a large variance, with runtimes ranging between 1.4 and

18 seconds. For the larger update sets, containing 400, 700, and 1000

tuples respectively, all evaluation strategies failed to compete with

non-incremental Soufflé. For example, elastic-update was unable to

Towards Elastic Incrementalization for Datalog PPDP 2021, September 6–8, 2021, Tallinn, Estonia

0 200 400 600 800 1000

update size

10−1

100

101

102

103

104

u
p

d
at

e
ru

n
ti

m
e

(s
)

souffle-counting

souffle-elastic-update

ddlog

(a) Doop

20 40 60 80 100

update size

101

u
p

d
at

e
ru

n
ti

m
e

(s
)

(b) CRDT

0 20000 40000 60000 80000 100000

update size

10−1

100

101

102

103

u
p

d
at

e
ru

n
ti

m
e

(s
)

(c) Galen

Figure 5: Incremental update size vs. runtime. The horizontal line in each figure is the runtime of non-incremental Soufflé on
the respective benchmark, and the upwards arrows indicate timeouts.

Benchmark Size and impacts of update

Doop

10 100 400 700 1000

7 - 25 88 - 53,816 26,701 - 5,257,937 49,175 - 3,589,404 87,424 - 6,559,713

CRDT

10 40 70 100

3,444 - 35,130 41,217 - 61,039 63,946 - 80,939 85,726 - 91,384

Galen

10 10000 40000 70000 100000

810 - 3,708 4,318,658 - 7,038,703 21,068,962 - 31,589,252 35,234,152 - 42,663,368 43,069,725 - 53,765,683

Table 2: The minimum andmaximum impact for updates of each size; the impact is the overall number of IDB tuples inserted
or deleted

complete any of the update sets within the time limit. These timed-

out updates contained tuples deep in a complex recursive structure,

indicating that the elastic-update algorithm does not handle these

large impact updates well. Likewise, the counting algorithms im-

plemented in both DDLog and in Soufflé exhibited generally poor

performance compared to non-incremental Soufflé. Furthermore,

these larger updates exhibited even greater variability, particularly

for Soufflé-counting.

The results for CRDT, in Fig. 5b tell a similar story. Here, even

small updates consisting of 10 EDB tuples exhibit unpredictable

and poor performance. In comparison to Doop, the small updates

for CRDT have a much larger impact, affecting between 3,444 and

35,130 IDB tuples. However, even this larger impact is around 1%

of the IDB, and even with these overall small impacts, the runtime

of incremental update is considerably slower than re-running the

computation from scratch in Soufflé. Similar to Doop, the perfor-

mance for larger updates only gets worse. For updates containing 40

EDB tuples, the runtimes varied between 9 and 13 seconds. While

this variation is smaller than for Doop, the result still indicates

that the performance of incremental evaluation is unpredictable.

For larger updates containing 70 and 100 EDB tuples, DDLog was

around 5× slower than non-incremental Soufflé, despite the update

being only around 0.04% of the EDB and impacting only up to 3.4%

of the IDB tuples. Update and Soufflé-counting were both more

performant, however still slower than non-incremental Soufflé. The

poor performance of incremental update algorithms may be due

to the structure of the Datalog rules in CRDT. The rules contain

several arithmetic inequality constraints, which cannot be indexed,

and are checked after the corresponding value is known in the

join. Therefore, incremental strategies that use indices to limit the

computation to updated tuples are ineffective in the presence of

performance-critical inequalities. It is also interesting to note that

the impact on the IDB tuples was much more consistent for CRDT

when compared with Doop. For example, with updates containing

100 EDB tuples, the impact on IDB tuples ranged between 85,726

and 91,384 tuples. This may be due to the much simpler structure

of the CRDT application, which contains a larger pre-processing

stage followed by a very small recursive stratum.

On the other hand, Galen performed far better with DDLog for

incremental evaluation. One reason for this is that Galen has a sim-

ple ruleset consisting of only 6 Datalog rules but with challenging

join characteristics. DDLog is better optimized for these joins, and

can outperform Soufflé for these incremental workloads. For small

updates consisting of 10 EDB tuples, an incremental update takes

between 0.1 and 0.2 seconds, providing far superior performance

compared to a non-incremental engine. Even for medium sized up-

dates consisting of 10,000 EDB tuples, DDLog’s incremental update

performance is generally faster than non-incremental Soufflé. Only

when we consider larger updates of 40,000, 70,000, and 100,000

EDB tuples, or 4%, 7%, and 10% respectively, does the performance

of incremental evaluation slow down considerably compared to

non-incremental Soufflé. The impact of these larger updates on the

IDB is up to 53M tuples, which is almost double the original IDB

size. This impact indicates that not only are most of the IDB tuples

affected but they are even affected in multiple iterations. Given

this large impact, it is no surprise that the runtime for such an

incremental update is slower than simply recomputing the result

from scratch. Overall, DDLog performs well on this benchmark

compared to non-incremental Soufflé. For Galen, the Soufflé in-

cremental strategies do not perform as well. Soufflé-counting is

PPDP 2021, September 6–8, 2021, Tallinn, Estonia David Zhao, Mukund Raghothaman, Pavle Subotić, and Bernhard Scholz

generally an order of magnitude slower for updates than DDLog,

due to unfavorable join orderings. Elastic-update fares even worse,

timing out for the larger updates above 10,000 EDB tuples. This is a

result of these updates impacting tuples across multiple iterations,

which the sparsification of the elastic strategy does not handle well.

These results indicate that state-of-the-art single strategy in-

cremental evaluation algorithms perform well on small impact

updates. However, they may be outperformed by a standard non-

incremental Datalog engine for more complex applications or high-

impact changes. Overall, we demonstrate Claim I by highlight-
ing the unpredictability and tendency for degraded perfor-
mance of single strategy evaluations on large impact updates
compared to non-incremental Soufflé.

5.2 Elastic Incremental Evaluation
In this section, we evaluate the performance of our elastic incremen-

tal evaluation strategy. That is, we evaluate the combination of
the Update algorithm with Bootstrap. We use an empirically

determined switching parameter of 20% to determine when to use

the Update and when to switch to Bootstrap. That is, if the update

time is more than 20% of the previous bootstrap time, we restart

using Bootstrap.

For this experiment, we use example workloads for incremental

evaluation, which consists of 13 epochs. The first epoch is the initial

evaluation, then the following 6 epochs are small updates (contain-

ing 10 tuples), with alternating deletion and insertions. These are

followed by one large update (1,000 for Doop, 100 for CRDT, and

100,000 for Galen) in epoch 7, then followed by another 4 small

updates, with a large update as the final epoch. We note that these

patterns may appear in all three of these benchmarks. For Doop,

there is a common pattern of software updates consisting of a large

refactor, followed by several smaller commits addressing minor

comments. For CRDT, an application commonly used for collabo-

rative online text editing, a large update may result from a large

portion of text being moved around, while a smaller update may

result from smaller additions or deletions from the text. For Galen,

a medical ontology application associated with patient diagnosis, a

large update may result from a medical test result being updated,

while a smaller update may result from a minor symptom change.

For Doop, in Fig. 6a, all of the incremental evaluation strategies

are able to effectively incrementalize for the small updates. However,

the main differences across the full workload result from the boot-

strap strategy, with both the initial evaluation and the large updates

being faster or on-par with the state-of-the-art counting strategy.

As a result, the elastic incremental strategy can complete this work-

load in 245 seconds, compared to 284 seconds for Soufflé-counting

and 467 seconds for DDLog. In comparison, non-incremental Souf-

flé, which evaluates each epoch from scratch, achieves 304 seconds

for this workload. Thus, this use case demonstrates that an elas-
tic incremental evaluation is effective for the complex Doop
benchmark. Overall, we demonstrate an amortized net gain
compared to non-incremental Soufflé as well as single strat-
egy evaluations.

For CRDT, in Fig. 6b, none of the incremental evaluation strate-

gies are effective for reasons illustrated in Section 5.1, even for

the small updates. Here, the elastic strategy hits the 20% heuristic

threshold for all updates, despite Update strategy actually being

slightly faster than Bootstrap if it were allowed to run to completion.

For this workload, non-incremental Soufflé completes all epochs

in 19 seconds, followed by 25 seconds for the Soufflé-counting, 31

seconds for Soufflé-elastic, and 56 seconds for DDLog. For this
particular application, we conclude that incremental evalu-
ation is ineffective in general.

For Galen, in Fig. 6c, the incremental evaluation strategies were

able to perform reasonably well. For epochs 1 and 5, the elastic

update strategy reached the 20% heuristic threshold, thus triggering

a bootstrap. If this threshold were not in place, the elastic update

would have been faster for these small updates. Despite this, Soufflé-

elastic is still highly competitive compared to the other incremental

evaluation strategies, being able to finish the workload in 384 sec-

onds, compared to 445 seconds for DDLog. Soufflé-counting was

ineffective for the large updates for Galen and times out overall. In

comparison, non-incremental Soufflé required 370 seconds for this

workload.The results demonstrate that our elastic evaluation
is competitive for the Galen use case.

Overall, the experimental evaluation has validated Claim
II by showing a performance improvement compared to sin-
gle strategy approaches. The limited overhead of our Bootstrap

evaluation makes up for any cost induced by the Update evaluation.

We believe with improved heuristics and tuning, this improvement

can be further maximized.

Table 3: Memory usage for each engine, showing the mini-
mum, average, and maximum memory usage across all of
the update sets

Bench. Engine Min (MB) Avg (MB) Max (MB)

Doop Soufflé 1,759 1,762 1,764

Soufflé-elastic 7,473 7,492 7,505

Soufflé-counting 9,106 9,449 11,387

DDLog 17,381 23,352 27,851

CRDT Soufflé 42 42 42

Soufflé-elastic 335 346 352

Soufflé-counting 328 337 344

DDLog 786 829 858

Galen Soufflé 901 931 960

Soufflé-elastic 5,641 5,672 5,698

Soufflé-counting 14,588 17,974 21,034

DDLog 15,333 20,862 26,461

Along with runtime, another aspect of performance is memory

usage. For example, in large program analysis use cases memory has

been shown to be a limiting factor [23]. Table 3 shows the minimum,

average, and maximum memory usage across all the update sets for

each benchmark. These results show that non-incremental Soufflé

uses the least memory by far since it does not need to keep the extra

state that incremental evaluation requires. Among the incremental

engines, Soufflé-elastic performs best since it only keeps the counts

for one iteration for each tuple. On the other hand, the counting

algorithm, both in Soufflé and in DDLog, requires keeping the count

of each tuple for every iteration it is generated in, thus using extra

memory to maintain this additional state.

6 RELATEDWORK
There is a large corpus of incremental algorithms in related fields,

including Databases [5], Logic-programming [37], Compilers [35],

Towards Elastic Incrementalization for Datalog PPDP 2021, September 6–8, 2021, Tallinn, Estonia

0 1 2 3 4 5 6 7 8 9 10 11 12

epoch

10−1

100

101

102

103

ru
n

ti
m

e
(s

)

souffle

souffle-elastic

souffle-counting

ddlog

(a) Doop

0 1 2 3 4 5 6 7 8 9 10 11 12

epoch

100

101

ru
n

ti
m

e
(s

)

(b) CRDT

0 1 2 3 4 5 6 7 8 9 10 11 12

epoch

10−1

100

101

102

103

ru
n

ti
m

e
(s

)

(c) Galen

Figure 6: Runtimes for an elastic workload. For each benchmark, the first epoch is an initial evaluation, followed by 6 epochs
of small updates, then one large update, then 4 epochs of small updates, then one large update.

Model-checking [40] and SAT solving [25]. In this section, we focus

exclusively on Datalog evaluation. The main body of work in incre-

mental Datalog evaluation is related to the Delete-Rederive (DRed)

algorithm [16]. The main weakness of this approach concerns over-
deletion. This is resolved by re-deriving tuples that are over-deleted.
The Counting algorithm presented in [16] is applicable only for

non-recursive Datalog programs. For this approach, each tuple is as-

sociated with a count of the number of different derivations for that

tuple. When removing or inserting a new tuple, that count is decre-

mented or incremented respectively, and a tuple may be removed

if the count reaches 0. However, with recursive Datalog programs,

deleting tuples may cause the recursive decrement of the count,

thus again leading to over-deletion. More recent developments in-

clude the Backward/Forward algorithm [29] and DRed
c
[18], which

are both optimizations of the DRed algorithm. These approaches

aim to reduce the approximation induced by the over-deletion step.

Backward/Forward uses a form of backward evaluation to eagerly

check if over-deleted tuples still have a proof from the remaining

input, while DRed
c
maintains separate recursive and non-recursive

counters to track the number of derivations of each tuple. While

these approaches indeed reduce the over-deletion of DRed, they

are still approximations and worst-case scenarios may exhibit large

runtime overheads. Techniques like [15] use provenance informa-

tion in the form of Boolean formulae for each tuple to determine

if a deleted tuple has proof support. Systems such as [7] are a for-

mally certified implementation of algorithms inspired by DRed for

a limited subset of non-recursive Datalog.

The Differential Dataflow (DDF) system [26] implements incre-

mental evaluation for Dataflow programming. The approach is

similar to the counting algorithm, with each tuple being associated

with a count for the number of derivations for that tuple. However,

DDF permits recursive programs by storing a count per iteration
of recursive evaluation. Its advantage is that it computes a precise

result for an incremental update. However, the setting of Dataflow

programming is different from Datalog, and more similar to stream

programming, where programs tend to be less complex with smaller

updates. Differential Datalog [36] is a Datalog engine built on top

of DDF. Other systems, such as RDFox [18, 19, 28] and IncA/Lad-

dder [43, 44], implement variations of DRed and DDF algorithms,

specialized to their respective domains. In comparison with ex-

isting approaches, our elastic evaluation is unique in that it has

two evaluation phases, recognizing the importance of specializing

the Bootstrap phase to initialize the computation. Our algorithms

form a sparsified variation of the counting algorithm, allowing the

efficient Bootstrap phase, and lowering the space overhead per

tuple.

In addition to incremental evaluation, multiset semantics for

Datalog have also been employed for other uses. [30] uses mul-

tiset semantics to enable magic set transformation for group-by

aggregates. Meanwhile, [6] uses multiset semantics to better model

replicated data that exist in many database applications.

7 CONCLUSION
This paper has demonstrated the pitfalls of existing incremental

evaluation algorithms for use cases with varying sized updates.

We have proposed the use of an elastic approach for incremental

evaluation. We switch between a low overhead Bootstrap strategy

that targets high impact updates and an Update strategy that targets

low impact updates. We propose a simple heuristic for switching

between the two strategies. Using this setup, we have shown that

the elastic approach is effective in use cases where single strategy

incremental evaluation struggles to perform adequately compared

to regular Datalog evaluation.

For future work, one potential avenue is to use worst-case opti-

mal join algorithms for Update rules. These rules typically involve

large intermediate results with small final output, where worst-

case optimal joins may be helpful. Other possibilities could include

further investigating the characteristics of incremental evaluation

algorithms to better understand when to switch between Bootstrap

and Update.

ACKNOWLEDGMENTS
Thanks to Boris Motik, Pan Hu, and Frank McSherry for their

insight and guidance incremental evaluation algorithms and their

systems. Also, thanks to Abdul Zreika, Sam Arch, and Xiaowen Hu

for their feedback on the paper.

PPDP 2021, September 6–8, 2021, Tallinn, Estonia David Zhao, Mukund Raghothaman, Pavle Subotić, and Bernhard Scholz

REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases.

Addison-Wesley Publishing Company.

[2] Nicholas Allen, Bernhard Scholz, and Padmanabhan Krishnan. 2015. Staged
Points-to Analysis for Large Code Bases. Springer Berlin Heidelberg, 131–150.

https://doi.org/10.1007/978-3-662-46663-6_7

[3] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu,

Emir Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn. 2015. Design and

Implementation of the LogicBlox System. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data (Melbourne, Victoria, Australia)

(SIGMOD ’15). ACM, New York, NY, USA, 1371–1382. https://doi.org/10.1145/

2723372.2742796

[4] John Backes, Sam Bayless, Byron Cook, Catherine Dodge, Andrew Gacek, Alan J.

Hu, Temesghen Kahsai, Bill Kocik, Evgenii Kotelnikov, Jure Kukovec, Sean

McLaughlin, Jason Reed, Neha Rungta, John Sizemore, Mark A. Stalzer, Preethi

Srinivasan, Pavle Subotic, Carsten Varming, and Blake Whaley. 2019. Reacha-

bility Analysis for AWS-Based Networks. In Computer Aided Verification - 31st
International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019,
Proceedings, Part II. 231–241.

[5] Andrey Balmin, Yannis Papakonstantinou, and Victor Vianu. 2004. Incremental

Validation of XML Documents. ACM Trans. Database Syst. 29, 4 (Dec. 2004),

710–751. https://doi.org/10.1145/1042046.1042050

[6] Leopoldo Bertossi, Georg Gottlob, and Reinhard Pichler. 2018. Datalog: Bag

semantics via set semantics. arXiv preprint arXiv:1803.06445 (2018).
[7] Angela Bonifati, Stefania Dumbrava, and Emilio Jesús Gallego Arias. 2018. Certi-

fied graph view maintenance with regular datalog. Theory and Practice of Logic
Programming 18, 3-4 (2018), 372–389.

[8] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative Specifica-

tion of Sophisticated Points-to Analyses. SIGPLAN Not. 44, 10 (2009), 243–262.
https://doi.org/10.1145/1639949.1640108

[9] James Cheney, Laura Chiticariu, and Wang-Chiew Tan. 2009. Provenance in

Databases: Why, How, and Where. Foundations and Trends in Databases 1 (2009),
379–474. https://doi.org/10.1561/1900000006

[10] Nathan Chong, Byron Cook, Konstantinos Kallas, Kareem Khazem, Felipe R.

Monteiro, Daniel Schwartz-Narbonne, Serdar Tasiran, Michael Tautschnig, and

Mark R. Tuttle. 2020. Code-Level Model Checking in the Software Develop-

ment Workflow. In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering: Software Engineering in Practice (Seoul, South Korea) (ICSE-
SEIP ’20). Association for Computing Machinery, New York, NY, USA, 11–20.

https://doi.org/10.1145/3377813.3381347

[11] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn.

2019. Scaling Static Analyses at Facebook. Commun. ACM 62, 8 (July 2019),

62–70.

[12] Neville Grech, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. 2019. Giga-

horse: Thorough, Declarative Decompilation of Smart Contracts. In Proceedings
of the 41th International Conference on Software Engineering, ICSE 2019. ACM,

Montreal, QC, Canada, (to appear).

[13] Neville Grech, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. 2019. Giga-

horse: thorough, declarative decompilation of smart contracts. In Proceedings of
the 41st International Conference on Software Engineering, ICSE 2019, Montreal,
QC, Canada, May 25-31, 2019, Joanne M. Atlee, Tevfik Bultan, and Jon Whittle

(Eds.). IEEE / ACM, 1176–1186. https://doi.org/10.1109/ICSE.2019.00120

[14] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz,

and Yannis Smaragdakis. 2018. MadMax: Surviving Out-of-Gas Conditions in

Ethereum Smart Contracts. In SPLASH 2018 OOPSLA.
[15] Todd J. Green, Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. 2007.

Update Exchange with Mappings and Provenance. In In Very Large Data Bases
(VLDB. 675–686.

[16] Ashish Gupta, Inderpal Singh Mumick, and Venkatramanan Siva Subrahmanian.

1993. Maintaining views incrementally. ACM SIGMOD Record 22, 2 (1993),

157–166.

[17] Kryštof Hoder, Nikolaj Bjørner, and Leonardo de Moura. 2011. 𝜇Z– An Effi-

cient Engine for Fixed Points with Constraints. In Computer Aided Verification,
Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 457–462.

[18] Pan Hu, Boris Motik, and Ian Horrocks. 2018. Optimised maintenance of datalog

materialisations. In Thirty-Second AAAI Conference on Artificial Intelligence.
[19] Pan Hu, Boris Motik, and Ian Horrocks. 2019. Modular Materialisation of Datalog

Programs. (2019).

[20] Shan Shan Huang, Todd Jeffrey Green, and Boon Thau Loo. 2011. Datalog

and Emerging Applications: An Interactive Tutorial. In Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data (Athens, Greece)
(SIGMOD ’11). ACM, 1213–1216. https://doi.org/10.1145/1989323.1989456

[21] Muhammad Imran, Gábor E Gévay, and Volker Markl. 2020. Distributed Graph

Analytics with Datalog Queries in Flink. In Software Foundations for Data Inter-
operability and Large Scale Graph Data Analytics. Springer, 70–83.

[22] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. 2016. Soufflé: On Synthesis

of Program Analyzers. Proceedings of Computer Aided Verification 28 (2016),

422–430.

[23] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. 2016. Soufflé: On synthesis

of program analyzers. In International Conference on Computer Aided Verification.
Springer, 422–430.

[24] Grigoris Karvounarakis, Todd J. Green, Zachary G. Ives, and Val Tannen. 2013.

Collaborative Data Sharing via Update Exchange and Provenance. ACM Trans.
Database Syst. 38, 3, Article 19 (Sept. 2013), 42 pages.

[25] Yousef Kilani, Mohammad Bsoul, Ayoub Alsarhan, and Ahmad Al-Khasawneh.

2013. A Survey of the Satisfiability-Problems Solving Algorithms. Int. J. Adv. Intell.
Paradigms 5, 3 (Sept. 2013), 233–256. https://doi.org/10.1504/IJAIP.2013.056447

[26] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael Isard. 2013.

Differential Dataflow.. In CIDR.
[27] Hongyuan Mei, Guanghui Qin, Minjie Xu, and Jason Eisner. 2020. Neural Dat-

alog Through Time: Informed Temporal Modeling via Logical Specification. In

Proceedings of the 37th International Conference on Machine Learning (Proceedings
of Machine Learning Research, Vol. 119), Hal Daumé III and Aarti Singh (Eds.).

PMLR, 6808–6819.

[28] Boris Motik, Yavor Nenov, Robert Piro, and Ian Horrocks. 2019. Maintenance of

datalog materialisations revisited. Artificial Intelligence 269 (2019), 76–136.
[29] Boris Motik, Yavor Nenov, Robert Edgar Felix Piro, and Ian Horrocks. 2015.

Incremental update of datalog materialisation: the backward/forward algorithm.

In Twenty-Ninth AAAI Conference on Artificial Intelligence.
[30] Inderpal Singh Mumick, Hamid Pirahesh, and Raghu Ramakrishnan. 1990. The

magic of duplicates and aggregates. In VLDB. Citeseer.
[31] Derek Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and

Martin Abadi. 2013. Naiad: A Timely Dataflow System. In Proceedings of the 24th
ACM Symposium on Operating Systems Principles (SOSP) (proceedings of the 24th
acm symposium on operating systems principles (sosp) ed.). ACM.

[32] Hung Q Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2018. Worst-case optimal

join algorithms. Journal of the ACM (JACM) 65, 3 (2018), 1–40.
[33] Xinming Ou, Sudhakar Govindavajhala, and Andrew W. Appel. 2005. MulVAL:

A Logic-based Network Security Analyzer. In Proceedings of the 14th Conference
on USENIX Security Symposium - Volume 14 (Baltimore, MD) (SSYM’05). USENIX
Association, Berkeley, CA, USA, 8–8. http://dl.acm.org/citation.cfm?id=1251398.

1251406

[34] Alan L Rector, Jeremy E Rogers, and Pam Pole. 1996. The GALEN high level

ontology. In Medical Informatics Europe’96. IOS Press, 174–178.
[35] Thomas Reps. 1982. Optimal-Time Incremental Semantic Analysis for Syntax-

Directed Editors. In Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (Albuquerque, New Mexico) (POPL ’82).
Association for Computing Machinery, New York, NY, USA, 169–176. https:

//doi.org/10.1145/582153.582172

[36] Leonid Ryzhyk and Mihai Budiu. 2019. Differential Datalog. Datalog 2 (2019),

4–5.

[37] Diptikalyan Saha and C. R. Ramakrishnan. 2006. Incremental Evaluation of

Tabled Prolog: Beyond Pure Logic Programs. In Practical Aspects of Declarative
Languages, Pascal Van Hentenryck (Ed.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 215–229.

[38] Jiwon Seo, Stephen Guo, and Monica S Lam. 2013. Socialite: Datalog extensions

for efficient social network analysis. In 2013 IEEE 29th International Conference
on Data Engineering (ICDE). IEEE, 278–289.

[39] Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson Condie,

and Carlo Zaniolo. 2016. Big data analytics with datalog queries on spark. In

Proceedings of the 2016 International Conference on Management of Data. 1135–
1149.

[40] Oleg V. Sokolsky and Scott A. Smolka. 1994. Incremental Model Checking in the

Modal Mu-Calculus. In IN CAV, VOLUME 818 OF LNCS. Springer-Verlag, 351–363.
[41] Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodík. 2005. Demand-

driven points-to analysis for Java. In Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2005, October 16-20, 2005, San Diego, CA, USA, Ralph E. Johnson and

Richard P. Gabriel (Eds.). ACM, 59–76. https://doi.org/10.1145/1094811.1094817

[42] Pavle Subotić. 2020. Concise Explanations in Static Analysis Driven Code Re-

views. (2020). https://www.youtube.com/watch?v=FPCZ2TIxrpg&t=8888s Infer

Practitioners 2020.

[43] Tamás Szabó, Sebastian Erdweg, and Gábor Bergmann. 2021. Incremental Whole-

Program Analysis in Datalog with Lattices. (2021).

[44] Tamás Szabó, Sebastian Erdweg, and Markus Voelter. 2016. Inca: A dsl for the

definition of incremental program analyses. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering. 320–331.

[45] Todd L Veldhuizen. 2012. Leapfrog triejoin: A simple, worst-case optimal join

algorithm. arXiv preprint arXiv:1210.0481 (2012).
[46] David Zhao, Pavle Subotić, and Bernhard Scholz. 2020. Debugging Large-scale

Datalog: A Scalable Provenance Evaluation Strategy. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 42, 2 (2020), 1–35.

https://doi.org/10.1007/978-3-662-46663-6_7
https://doi.org/10.1145/2723372.2742796
https://doi.org/10.1145/2723372.2742796
https://doi.org/10.1145/1042046.1042050
https://doi.org/10.1145/1639949.1640108
https://doi.org/10.1561/1900000006
https://doi.org/10.1145/3377813.3381347
https://doi.org/10.1109/ICSE.2019.00120
https://doi.org/10.1145/1989323.1989456
https://doi.org/10.1504/IJAIP.2013.056447
http://dl.acm.org/citation.cfm?id=1251398.1251406
http://dl.acm.org/citation.cfm?id=1251398.1251406
https://doi.org/10.1145/582153.582172
https://doi.org/10.1145/582153.582172
https://doi.org/10.1145/1094811.1094817
https://www.youtube.com/watch?v=FPCZ2TIxrpg&t=8888s

Towards Elastic Incrementalization for Datalog PPDP 2021, September 6–8, 2021, Tallinn, Estonia

[47] Wenchao Zhou, Micah Sherr, Tao Tao, Xiaozhou Li, Boon Thau Loo, and Yun

Mao. 2010. Efficient Querying and Maintenance of Network Provenance at

Internet-Scale. Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data (2010), 615–626.

A PROOFS FOR THEOREMS
A.1 Proof of Lemma 3.2

Proof. This proof is by induction over the iterations𝑘 . For𝑘 = 1,

the semi-naïve algorithm takes Δ0, while the bootstrap algorithm

takes Supp(B#

0
). Both of these sets are defined to be 𝐸, so are equal.

For the induction hypothesis, assume that all 𝐼𝑖−1 of bootstrap equal
𝐼𝑖−1 of semi-naïve. Then, Supp(B#

𝑖
) = Δ𝑖 by Lemma 3.1. Therefore,

adding Supp(B#

𝑖
) or Δ𝑖 to the union results in the same set. □

A.2 Proof of Lemma 3.3
Proof. This proof is by induction over the iterations. For 𝑘 = 0,

𝐼−
0
= 𝐸− and 𝐼+

0
= 𝐸+ by definition, so properties (1) and (2) hold.

The induction hypothesis is that for iteration 𝑘 − 1, we have

𝐼−
𝑘−1 ⊆ 𝐼𝑜

𝑘−1, 𝐼
−
𝑘−1 ∩ 𝐼𝑘−1 = ∅, 𝐼

+
𝑘−1 ∩ 𝐼

𝑜
𝑘−1 = ∅, and 𝐼

+
𝑘−1 ⊆ 𝐼𝑘−1.

For property (1), we show 𝐼−
𝑘
⊆ 𝐼𝑜

𝑘
. Consider line 14 of Algo-

rithm 3, where 𝐼−
𝑘
← (𝐼−

𝑘−1 \ 𝑁𝑘) ∪ (𝑁𝑜
𝑘
\ 𝐼𝑘). In the first part of

the union, 𝐼−
𝑘−1 ⊆ 𝐼𝑜

𝑘−1 by the induction hypothesis. Therefore, also

𝐼−
𝑘−1 ⊆ 𝐼𝑜

𝑘
, since 𝐼𝑜

𝑘−1 grows monotonically. In the second part of

the union, 𝑁𝑜
𝑘
⊆ 𝐼𝑜

𝑘
by definition of 𝐼𝑜

𝑘
. Therefore, 𝐼−

𝑘
⊆ 𝐼𝑜

𝑘
.

To show that 𝐼−
𝑘
∩ 𝐼𝑘 = ∅, consider the same line. In the first

part of the union, 𝐼−
𝑘−1 ∩ 𝐼𝑘−1 = ∅ by the induction hypothesis.

We then exclude 𝑁𝑘 , and since 𝐼𝑘 = 𝐼𝑘−1 ∪ 𝑁𝑘 by definition, then

(𝐼−
𝑘−1 \ 𝑁𝑘) ∩ 𝐼𝑘 = ∅. In the second part of the union, we exclude

𝐼𝑘 . Therefore, 𝐼
−
𝑘
∩ 𝐼𝑘 = ∅.

Property (2) holds by similar arguments on line 15. □

A.3 Proof of Lemma 3.4
Proof. Wefirst show that 𝐼𝑜

𝑘
\𝐼𝑘 = 𝐼−

𝑘
by showing both directions

of inclusion. The reverse direction, i.e., that 𝐼−
𝑘
⊆ 𝐼𝑜

𝑘
\ 𝐼𝑘 is a direct

corollary of Lemma 3.3, that 𝐼−
𝑘
⊆ 𝐼𝑜

𝑘
and 𝐼−

𝑘
∩ 𝐼𝑘 = ∅. For the

forward direction, consider some tuple 𝑡 ∈ 𝐼𝑜
𝑘
\ 𝐼𝑘 . Then, 𝑡 must be

in some 𝑁𝑜
𝑖
\ 𝐼𝑘 for some 𝑖 ≤ 𝑘 . Since 𝐼𝑖 ⊆ 𝐼𝑘 , 𝑡 is also in 𝑁𝑜

𝑖
\ 𝐼𝑖 .

Therefore, 𝑡 ∈ 𝐼−
𝑖
. Also, 𝑡 cannot be removed from 𝐼− in a later

iteration, since 𝑡 ∉ 𝐼𝑘 , and therefore, 𝑡 ∈ 𝐼−
𝑘
.

We have shown both directions of inclusion, and therefore, 𝐼𝑜
𝑘
\

𝐼𝑘 = 𝐼−
𝑘
. By a similar argument, 𝐼𝑘 \ 𝐼𝑜𝑘 = 𝐼+

𝑘
. From these equalities:

𝐼𝑜
𝑘
\ 𝐼−

𝑘
∪ 𝐼+

𝑘
= 𝐼𝑜

𝑘
\ (𝐼𝑜

𝑘
\ 𝐼𝑘) ∪ (𝐼𝑘 \ 𝐼𝑜𝑘)

= (𝐼𝑜
𝑘
∩ 𝐼𝑘) ∪ (𝐼𝑘 \ 𝐼𝑜𝑘) = 𝐼𝑘

□

A.4 Proof of Theorem 3.5
Proof. For this proof, we mainly consider the underlying sets

of derivations rather than the counting multisets, since the count-

ing multisets do not distinguish between different derivations. We

introduce some new notation to convert between derivations and

tuples: 𝜙 ((𝑡 :- 𝑡1, . . . , 𝑡𝑛)) := 𝑡 takes the head tuple of a derivation.

The proof is an induction over the iterations. The initial step,

where 𝑘 = 0, is true since both B#

0
and N#

0
take on the value of

𝐸 \ 𝐸− ∪ 𝐸+, where every tuple has a count of 1.

The induction hypothesis is that for all 0 ≤ 𝑖 < 𝑘 , we have

B#

𝑖
= N#

𝑖
. We consider each of the four terms in lines 10 and 11. We

first need to show that the sets of derivations computed by these

lines are disjoint, so that the algorithm does not double count.

• For the deletion term (we label it (1)), we have the derivations
{𝑑 ∈ Π𝐷 [𝐼𝑜

𝑘−1 | 𝑁
𝑜
𝑘−1 | 𝐼

−
𝑘−1] | 𝜙 (𝑑) ∉ 𝐼𝑜

𝑘−1}.
• For the insertion term (labelled (2)), we have derivations

{𝑑 ∈ Π𝐷 [𝐼𝑘−1 | 𝑁𝑘−1 | 𝐼+𝑘−1] | 𝜙 (𝑑) ∉ 𝐼𝑘−1}. Since 𝐼+𝑘−1 ∩
𝐼𝑜
𝑘−1 = ∅ (from Corollary 3.4), then (2) ∩ (1) = ∅, since (1)
takes derivations only from 𝐼𝑜

𝑘−1.
• For the re-discovery term (labelled (3)), we have derivations
{𝑑 ∈ Π𝐷 [𝐼𝑜

𝑘−1 ∩ 𝐼𝑘−1 | 𝑁𝑘−1] | 𝜙 (𝑑) ∈ 𝐼−
𝑘−1 and 𝜙 (𝑑) ∉

𝐼𝑘−1}. Since this takes derivations from 𝐼𝑜
𝑘−1, and 𝐼𝑜

𝑘−1 ∩
𝐼+
𝑘−1 = ∅, then (3) ∩ (2) = ∅. Also, since 𝐼−

𝑘−1 ⊆ 𝐼𝑜
𝑘−1 (from

Corollary 3.4), we have (3) ∩ (1) = ∅, since (1) excludes
tuples from 𝐼𝑜

𝑘−1.
• For the sparsification term (labelled (4)), we have N#

𝑘
⊖

(N#

𝑘
∩ 𝐼+

𝑘−1). However, note that this term is processed after

the three other terms. Therefore, it naturally excludes (1),
and so (4) ∩ (1) = ∅. Moreover, we have 𝐼+

𝑘−1 ⊆ 𝐼𝑘−1 (from
Corollary 3.4), and so (4) ∩ (3) = ∅ and (4) ∩ (2) = ∅, since
both (3) and (2) exclude 𝐼𝑘−1.

Since all 4 terms produce disjoint derivations, the algorithm does

not double count when adding or removing any derivations. Next,

we need to prove that for any derivation in N𝐷𝑜
𝑘

and not in N𝐷
𝑘
, it

is removed by one of the four terms, and vice versa.

Consider a derivation 𝑑 ∈ N𝐷𝑜
𝑘
\ N𝐷

𝑘
. By definition, 𝑑 ∈ {𝑑 ∈

Π𝐷 [𝐼𝑜
𝑘−1 | 𝑁

𝑜
𝑘−1] | 𝜙 (𝑑) ∉ 𝐼𝑜

𝑘−1} \ {𝑑 ∈ Π
𝐷 [𝐼𝑘−1 | 𝑁𝑘−1] | 𝜙 (𝑑) ∉

𝐼𝑘−1}. Then, there are two cases. The first case is that 𝜙 (𝑑) ∈ 𝐼𝑘−1.
In this case, also 𝜙 (𝑑) ∉ 𝐼𝑜

𝑘−1, by our assumption, and so 𝜙 (𝑑) ∈
𝐼+
𝑘−1 (by Corollary 3.4). Therefore, 𝑑 would be removed by the

sparsification term which removes all tuples that are in 𝐼+
𝑘−1. The

second case is that 𝑑 ∉ Π𝐷 [𝐼𝑘−1 | 𝑁𝑘−1]. In this case, one of the

body tuples of 𝑑 is in 𝐼𝑜
𝑘−1 \ 𝐼𝑘−1 (or in 𝑁𝑜

𝑘−1 \ 𝑁𝑘−1, which implies

also that it is in 𝐼𝑜
𝑘−1 \ 𝐼𝑘−1), which equals 𝐼−

𝑘−1 (by Corollary 3.4).

Therefore, 𝑑 ∈ Π𝐷 [𝐼𝑜
𝑘−1 | 𝑁

𝑜
𝑘−1 | 𝐼

−
𝑘−1], and since 𝜙 (𝑑) ∉ 𝐼𝑜

𝑘−1 by
assumption, it would be removed by the deletion term.

Now, for the opposite case, consider a derivation 𝑑 ∈ N𝐷
𝑘
\N𝐷𝑜

𝑘
.

We want to show that this derivation is inserted by one of the

four terms. By definition, 𝑑 ∈ {𝑑 ∈ (Π𝐷 [𝐼𝑘−1 | 𝑁𝑘−1] | 𝜙 (𝑑) ∉
𝐼𝑘−1}\{𝑑 ∈ Π𝐷 [𝐼𝑜

𝑘−1 | 𝑁
𝑜
𝑘−1] | 𝜙 (𝑑) ∉ 𝐼𝑜

𝑘−1}. Like the deletion case,
there are two cases. The first is that at least one of the body tuples

of 𝑑 are in 𝐼𝑘−1 \ 𝐼𝑜𝑘−1. Then, this tuple is in 𝐼+
𝑘−1, and therefore,

𝑑 ∈ Π𝐷 [𝐼𝑘−1 | 𝑁𝑘−1 | 𝐼+𝑘−1]. Since 𝜙 (𝑑) ∉ 𝐼𝑘−1 by assumption,

then 𝑑 will be inserted by the insertion term. The second case is if

𝜙 (𝑑) ∈ 𝐼𝑜
𝑘−1. Then, since 𝜙 (𝑑) ∉ 𝐼𝑘−1, 𝜙 (𝑑) ∈ 𝐼𝑜𝑘−1 \ 𝐼𝑘−1 = 𝐼−

𝑘−1. If
the first case doesn’t hold, we know that all of the body tuples are

not in 𝐼𝑘−1 \ 𝐼𝑜𝑘−1, and therefore, they must all be in 𝐼𝑜
𝑘−1. Therefore,

𝑑 ∈ Π𝐷 [𝐼𝑜
𝑘−1 ∩ 𝐼𝑘−1 | 𝑁𝑘−1]. Since 𝜙 (𝑑) ∉ 𝐼𝑘−1 by assumption, 𝑑

would be inserted by the re-discovery term. □

B ADDITIONAL EXPERIMENTAL DATA

PPDP 2021, September 6–8, 2021, Tallinn, Estonia David Zhao, Mukund Raghothaman, Pavle Subotić, and Bernhard Scholz

Benchmark Engine Updates Epoch 0 (sec) Epoch 1 (-) (sec) Epoch 2 (+) (sec) Memory (MB)

doop Soufflé-elastic(update) 10 64.53

min 0.20

max 5.62

min 0.20

max 0.42 7486.5

100 66.22

min 4.63

max 13624.27

min 0.38

max 2.98 7497.4

400 - - - -

700 - - - -

1000 - - - -

Soufflé-counting 10 113.64

min 0.50

max 1.00

min 0.50

max 1.11 9116.2

100 116.00

min 0.78

max 9.05

min 0.77

max 9.49 9131.4

400 114.00

min 10.20

max 632.30

min 10.90

max 695.00 9540.6

700 113.81

min 21.26

max 129.37

min 22.60

max 147.66 9539.8

1000 116.92

min 14.40

max 428.29

min 16.70

max 500.99 9917.3

DDLog 10 164.53

min 0.07

max 1.85

min 0.02

max 1.67 17495.4

100 167.83

min 2.57

max 102.51

min 2.30

max 110.29 20682.4

400 169.45

min 90.65

max 145.37

min 101.38

max 146.70 25002.1

700 164.86

min 115.14

max 205.84

min 129.22

max 185.37 26350.2

1000 167.35

min 149.71

max 232.32

min 148.30

max 205.08 27230.5

crdt Soufflé-elastic(update) 10 1.99

min 1.64

max 1.74

min 1.45

max 1.51 338.7

40 1.96

min 1.93

max 2.10

min 1.67

max 1.78 345.7

70 1.96

min 2.32

max 2.68

min 2.01

max 2.58 349.3

100 2.00

min 2.51

max 2.90

min 2.05

max 2.65 351.8

Soufflé-counting 10 2.98

min 1.58

max 1.69

min 1.62

max 1.74 331.4

40 3.02

min 1.83

max 1.99

min 1.80

max 2.00 336.6

70 3.10

min 2.15

max 2.32

min 2.11

max 2.34 338.6

100 2.92

min 2.21

max 2.47

min 2.19

max 2.49 341.6

DDLog 10 8.52

min 0.71

max 5.97

min 0.69

max 5.74 804.5

40 8.61

min 4.69

max 6.56

min 4.47

max 6.72 825.4

70 8.59

min 7.02

max 7.36

min 6.78

max 7.33 833.1

100 8.50

min 7.29

max 7.62

min 7.08

max 7.28 851.8

galen Soufflé-elastic(update) 10 60.69

min 2.48

max 20.29

min 0.17

max 0.24 5666.9

10000 59.64

min 37.16

max 94.22

min 0.29

max 0.62 5676.2

40000 - - - -

70000 - - - -

100000 - - - -

Soufflé-counting 10 415.63

min 0.40

max 1.44

min 0.53

max 1.64 14595.4

10000 415.05

min 147.14

max 203.44

min 146.88

max 239.68 15799.4

40000 422.35

min 568.20

max 902.38

min 612.21

max 977.07 18776.6

70000 411.63

min 996.40

max 1130.46

min 1025.11

max 1216.50 20027.0

100000 414.45

min 1131.57

max 1602.21

min 21.03

max 1377.78 20671.6

DDLog 10 152.09

min 0.09

max 0.20

min 0.06

max 0.09 15602.4

10000 154.10

min 19.69

max 28.02

min 20.78

max 27.14 16771.1

40000 152.70

min 74.72

max 96.72

min 77.23

max 99.10 22027.8

70000 154.10

min 107.76

max 130.03

min 110.19

max 132.05 24195.4

100000 157.96

min 135.58

max 160.32

min 137.96

max 168.43 25712.8

Table 4: Running times and memory usage for Dynamic Datalog Benchmarks, each min and max value denotes the minimum
andmaximum runtimes over 5 different datasets of the corresponding update size, - denotes timeout, and variations in Epoch
0 runtime are due to re-runs of the experiment

	Abstract
	1 Introduction
	2 Background
	2.1 Example: Datalog Pointer Analysis
	2.2 Semi-Naïve Evaluation
	2.3 Incremental Datalog Evaluation

	3 Elastic Incremental Evaluation
	3.1 Bootstrap Algorithm
	3.2 Incremental Update Algorithm
	3.3 Stratified Negation and Constraints

	4 Integration into Soufflé
	4.1 Core Implementation
	4.2 Optimizations

	5 Experimental Evaluation
	5.1 Single Strategy Incremental Evaluation
	5.2 Elastic Incremental Evaluation

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Proofs for Theorems
	A.1 Proof of Lemma 3.2
	A.2 Proof of Lemma 3.3
	A.3 Proof of Lemma 3.4
	A.4 Proof of Theorem 3.5

	B Additional Experimental Data

