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Abstract. Advances in incremental Datalog evaluation strategies have
made Datalog popular among use cases with constantly evolving in-
puts such as static analysis in continuous integration and deployment
pipelines. As a result, new logic programming debugging techniques are
needed to support these emerging use cases.
This paper introduces an incremental debugging technique for Datalog,
which determines the failing changes for a rollback in an incremental
setup. Our debugging technique leverages a novel incremental prove-
nance method. We have implemented our technique using an incremen-
tal version of the Soufflé Datalog engine and evaluated its effectiveness
on the DaCapo Java program benchmarks analyzed by the Doop static
analysis library. Compared to state-of-the-art techniques, we can localize
faults and suggest rollbacks with an overall speedup of over 26.9× while
providing higher quality results.

1 Introduction

Datalog has achieved widespread adoption in recent years, particularly in static
analysis use cases [8,2,20,19,42,23,4] that can benefit from incremental evalua-
tion. In an industrial setting, static analysis tools are deployed in continuous in-
tegration and deployment setups to perform checks and validations after changes
are made to a code base [12,1]. Assuming that changes between analysis runs
(aka. epochs) are small enough, a static analyzer written in Datalog can be effec-
tively processed by incremental evaluation strategies [40,29,31,28] which recycle
computations of previous runs. When a fault appears from a change in the pro-
gram, users commonly need to (1) localize which changes caused the fault and
(2) partially roll back the changes so that the faults no longer appear. How-
ever, manually performing this bug localization and the subsequent rollback is
impractical, and users typically perform a full rollback while investigating the
fault’s actual cause [36,37]. The correct change is re-introduced when the fault is



found and addressed, and the program is re-analyzed. This entire debugging pro-
cess can take significant time. Thus, an automated approach for detecting and
performing partial rollbacks can significantly enhance developer productivity.

Existing state-of-the-art Datalog debugging techniques that are available em-
ploy data provenance [26,41] or algorithmic debugging [10] to provide explana-
tions. However, these techniques require a deep understanding of the tool’s im-
plementation and target the ruleset, not the input. Therefore, such approaches
are difficult to apply to automate input localization and rollback. The most
natural candidate for this task is delta debugging [38,39], a debugging frame-
work for generalizing and simplifying a failing test case. This technique has
recently been shown to scale well when integrated with state-of-the-art Datalog
synthesizers [30] to obtain better synthesis constraints. Delta debugging uses a
divide-and-conquer approach to localize the faults when changes are made to
a program, thus providing a concise witness for the fault. However, the stan-
dard delta debugging approach is programming language agnostic and requires
programs to be re-run, which may require significant time.

In this paper, we introduce a novel approach to automating localize-rollback
debugging. Our approach comprises a novel incremental provenance technique
and two intertwined algorithms that diagnose and compute a rollback sugges-
tion for a set of faults (missing and unwanted tuples). The first algorithm is a
fault localization algorithm that reproduces a set of faults, aiding the user in
diagnosis. Fault localization traverses the incremental proof tree provided by
our provenance technique, producing the subset of an incremental update that
causes the faults to appear in the current epoch. The second algorithm performs
an input repair to provide a local rollback suggestion to the user. A rollback
suggestion is a subset of an incremental update, such that the faults are fixed
when it is rolled back.

We have implemented our technique using an extended incremental version of
the Soufflé [24,40] Datalog engine and evaluated its effectiveness on DaCapo [6]
Java program benchmarks analyzed by the Doop [8] static analysis tool. Com-
pared to delta debugging, we can localize and fix faults with a speedup of over
26.9× while providing smaller repairs in 27% of the benchmarks. To the best of
our knowledge, we are the first to offer such a debugging feature in a Datalog
engine, particularly for large workloads within a practical amount of time. We
summarize our contributions as follows:

– We propose a novel debugging technique for incremental changing input.
We employ localization and rollback techniques for Datalog that scale to
real-world program analysis problems.

– We propose a novel incremental provenance mechanism for Datalog engines.
Our provenance technique leverages incremental information to construct
succinct proof trees.

– We implement our technique in the state-of-the-art Datalog engine Soufflé,
including extending incremental evaluation to compute provenance.
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– We evaluate our technique with Doop static analysis for large Java programs
and compare it to a delta-debugging approach adapted for the localization
and rollback problem.

2 Overview

1 admin = new Admin();
2 sec = new AdminSession();
3 ins = new InsecureSession();
4 admin.session = ins;
5 if (admin.isAdmin && admin.isAuth)
6 admin.session = sec;
7 else
8 userSession = ins;

(a) Input Program

new(admin,L1).
new(sec,L2).
new(ins,L3).
store(admin,session,ins).

store(admin,session,sec).

assign(userSession,ins).

(b) EDB Tuples

// r1: var = new Obj()
vpt(Var, Obj) :- new(Var, Obj).
// r2: var = var2
vpt(Var, Obj) :- assign(Var, Var2), vpt(Var2, Obj).
// r3: v = i.f; i2.f = v2 where i, i2 point to same obj
vpt(Var, Obj) :- load(Var, Inter, F), store(Inter2, F, Var2),

vpt(Inter, InterObj), vpt(Inter2, InterObj),
vpt(Var2, Obj).

// r4: v1, v2 point to same obj
alias(V1, V2) :- vpt(V1, Obj), vpt(V2, Obj), V1 != V2.

(c) Datalog Points-to Analysis

Fig. 1: Program Analysis Datalog Setup

2.1 Motivating Example

Consider a Datalog pointer analysis in Fig. 1. Here, we show an input program
to analyze (Fig. 1a), which is encoded as a set of tuples (Fig. 1b) by an extractor,
which maintains a mapping between tuples and source code [24,32,34]. We have
relations new, assign, load, and assign capturing the semantics of the input
program to analyze. These relations are also known as the Extensional Database
(EDB), representing the analyzer’s input. The analyzer written in Datalog com-
putes relations vpt (Variable Points To) and alias as the output, which is also
known as the Intensional Database (IDB). For the points-to analysis, Fig. 1c has
four rules. A rule is of the form: Rh(Xh) :- R1(X1), . . . , Rk(Xk). Each R(X)
is a predicate, with R being a relation name and X being a vector of variables
and constants of appropriate arity. The predicate to the left of :- is the head
and the sequence of predicates to the right is the body. A Datalog rule can be
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read from right to left: “for all rule instantiations, if every tuple in the body is
derivable, then the corresponding tuple for the head is also derivable”.

For example, r2 is vpt(Var, Obj) :- assign(Var, Var2), vpt(Var2, Obj), which
can be interpreted as “if there is an assignment from Var to Var2, and if Var2
may point to Obj, then also Var may point to Obj”. In combination, the four
rules represent a flow-insensitive but field-sensitive points-to analysis. The IDB
relations vpt and alias represent the analysis result: variables may point to
objects and pairs of variables that may be an alias with each other.

Suppose the input program in Fig. 1a changes by adding a method to upgrade
a user session to an admin session with the code:

upgradedSession = userSession;
userSession = admin.session;

The result of the points-to analysis can be incrementally updated by inserting
the tuples assign(upgradedSession, userSession) and load(userSession,
admin, session). After computing the incremental update, we would observe
that alias(userSession, sec) is now contained in the output. However, we
may wish to maintain that userSession should not alias with the secure session
sec. Consequently, the incremental update has introduced a fault, which we wish
to localize and initiate a rollback.

A fault localization provides a subset of the incremental update that is suffi-
cient to reproduce the fault, while a rollback suggestion is a subset of the update
which fixes the faults. In this particular situation, the fault localization and roll-
back suggestion are identical, containing only the insertion of the second tuple,
load(userSession, admin, session). Notably, the other tuple in the update,
assign(upgradedSession, userSession), is irrelevant for reproducing or fix-
ing the fault and thus is not included in the fault localization/rollback.

In general, an incremental update may contain thousands of inserted and
deleted tuples, and a set of faults may contain multiple tuples that are changed in
the incremental update. Moreover, the fault tuples may have multiple alternative
derivations, meaning that the localization and rollback results are different. In
these situations, automatically localizing and rolling back the faults to find a
small relevant subset of the incremental update is essential to provide a concise
explanation of the faults to the user.

The scenario presented above is common during software development, where
making changes to a program causes faults to appear. While our example con-
cerns a points-to analysis computed for a source program, our fault localization
and repair techniques are, in principle, applicable to any Datalog program.

Problem Statement: Given an incremental update with its resulting faults,
automatically find a fault localization and rollback suggestion.

2.2 Approach Overview

An overview of our approach is shown in Figure 2. The first portion of the system
is the incremental Datalog evaluation. Here, the incremental evaluation takes an
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Fig. 2: Fault Localization and Repair System

EDB and an incremental update containing tuples inserted or deleted from the
EDB, denoted ∆EDB. The result of the incremental evaluation is the output
IDB, along with the set of IDB insertions and deletions from the incremental
update, denoted ∆IDB. The evaluation also enables incremental provenance,
producing a proof tree for a given query tuple.

The second portion of the system is the fault localization/rollback repair.
This process takes a set of faults provided by the user, which is a subset of
∆IDB where each tuple is either unwanted and inserted in ∆IDB or is desirable
but deleted in ∆IDB. Then, the fault localization and rollback repair algorithms
use the full ∆IDB and ∆EDB, along with incremental provenance, to produce
a localization or rollback suggestion.

The main fault localization and rollback algorithms work in tandem to pro-
vide localizations or rollback suggestions to the user. The key idea of these
algorithms is to compute proof trees for fault tuples using the provenance utility
provided by the incremental Datalog engine. These proof trees directly provide
localization for the faults. For fault rollback, the algorithms create an Integer
Linear Programming (ILP) instance that encodes the proof trees, with the goal
of disabling all proof trees to prevent the fault tuples from appearing.

The result is a localization or rollback suggestion, which is a subset of ∆EDB.
For localization, the subset S ⊆ ∆EDB is such that if we were to apply S to
EDB as the diff, the set of faults would be reproduced. For a rollback suggestion,
the subset S ⊆ ∆EDB is such that if we were to remove S from ∆EDB, then
the resulting diff would not produce the faults.

3 Incremental Provenance

Provenance [10,41,30] provides machinery to explain the existence of a tuple. For
example, the tuple vpt(userSession, L3) could be explained in our running
example by the following proof tree:

assign(userSession, ins)

new(ins, L3)
r1

vpt(ins, L3)
r2

vpt(userSession, L3)
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However, exploring the proof tree requires familiarity with the Datalog pro-
gram itself. Thus, provenance alone is an excellent utility for the tool developer
but unsuitable for end-users unfamiliar with the Datalog rules.

For fault localization and rollback, a novel provenance strategy is required
that builds on incremental evaluation. Incremental provenance restricts the com-
putations of the proof tree to the portions affected by the incremental update
only. For example, Figure 3 shows an incremental proof tree for the inserted
tuple alias(userSession,sec). The tuples labeled with (+) are inserted by an
incremental update. Incremental provenance would only compute provenance
information for these newly inserted tuples and would not explore the tuples in
red already established in a previous epoch.

load(u,a,s)(+) store(a,s,s)
new(a,L1)
vpt(a,L1)

new(a,L1)
vpt(a,L1)

new(s,L2)
vpt(s,L2)

vpt(userSession,L2)(+)
new(s,L2)
vpt(s,L2)

alias(userSession,sec)(+)

Fig. 3: The proof tree for alias(userSession,sec). (+) denotes tuples that are
inserted as a result of the incremental update, red denotes tuples that were not
affected by the incremental update.

To formalize incremental provenance, we define inc-prov as follows. Given
an incremental update ∆E, inc-prov(t,∆E) should consist of tuples that were
updated due to the incremental update.

Definition 1. The set inc-prov(t,∆E) is the set of tuples that appear in the
proof tree for t, that are also inserted as a result of ∆E.

A two-phase approach for provenance was introduced in [41]. In the first
phase, tuples are annotated with provenance annotations while computing the
IDB. In the second phase, the user can query a tuple’s proof tree using the
annotations from the first phase. For each tuple, the important annotation is its
minimal proof tree height. For instance, our running example produces the tuple
vpt(userSession, L3). This tuple would be annotated with its minimal proof
tree height of 2. Formally, the height annotation is 0 for an EDB tuple, or h(t) =
max{h(t1), . . . , h(tk)}+1 if t is computed by a rule instantiation t :- t1, . . . , tk.
The provenance annotations are used in a provenance construction stage, where
the annotations form constraints to guide the proof tree construction.

For incremental evaluation, the standard strategies [29,28,31,40] use incre-
mental annotations to keep track of when tuples are computed during the execu-
tion. In particular, for each tuple, [40] stores the iteration number of the fixpoint
computation and a count for the number of derivations. To compute provenance
information in an incremental evaluation setting, we observe a correspondence
between the iteration number and provenance annotations. A tuple is produced
in some iteration if at least one of the body tuples was produced in the previous
iteration. Therefore, the iteration number I for a tuple produced in a fixpoint is
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equivalent to I(t) = max{I(t1), . . . , I(tk)}+ 1 if t is computed by rule instanti-
ation t :- t1, . . . , tk. This definition of iteration number corresponds closely to
the height annotation in provenance. Therefore, the iteration number is suitable
for constructing proof trees similar to provenance annotations.

For fault localization and rollback, it is also important that the Datalog en-
gine produces only provenance information that is relevant for faults that appear
after an incremental update. Therefore, the provenance information produced by
the Datalog engine should be restricted to tuples inserted or deleted by the in-
cremental update. Thus, we adapt the user-driven proof tree exploration process
in [41] to use an automated procedure that enumerates exactly the portions of
the proof tree that have been affected by the incremental update.

As a result, our approach for incremental provenance produces proof trees
containing only tuples inserted or deleted due to an update. For fault localiza-
tion and rollback, this property is crucial for minimizing the search space when
computing localizations and rollback suggestions.

4 Fault Localization and Rollback Repair

This section describes our approach and algorithms for both the fault localization
and rollback problems. We begin by formalizing the problem and then presenting
basic versions of both problems. Finally, we extend the algorithms to handle
missing faults and negation.

4.1 Preliminaries

We first define a fault to formalize the fault localization and rollback problems.
For a Datalog program, a fault may manifest as either (1) an undesirable tuple
that appears or (2) a desirable tuple that disappears. In other words, a fault is
a tuple that does not match the intended semantics of a program.

Definition 2 (Intended Semantics). The intended semantics of a Datalog
program P is a pair of sets (I+, I−) where I+ and I− are desirable and undesirable
tuple sets, respectively. An input set E is correct w.r.t P and (I+, I−) if I+ ⊆
P (E) and I− ∩ P (E) = ∅.

Given an intended semantics for a program, a fault can be defined as follows:

Definition 3 (Fault). Let P be a Datalog program, with input set E and in-
tended semantics (I+, I−). Assume that E is incorrect w.r.t. P with (I+, I−).
Then, a fault of E is a tuple t such that either t is desirable but missing, i.e.,
t ∈ I+ \ P (E) or t is undesirable but produced, i.e., t ∈ P (E) ∩ I−.

We can formalize the situation where an incremental update for a Datalog
program introduces a fault. Let P be a Datalog program with intended semantics
I✓ = (I+, I−) and let E1 be an input EDB. Then, let ∆E1→2 be an incremental
update, such that E1 ⊎∆E1→2 results in another input EDB, E2. Then, assume
that E1 is correct w.r.t I✓, but E2 is incorrect.
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Fault Localization. The fault localization problem allows the user to pinpoint
the sources of faults. This is achieved by providing a minimal subset of the
incremental update that can still reproduce the fault.

Definition 4 (Fault Localization). A fault localization is a subset δE ⊆
∆E1→2 such that P (E1 ⊎ δE) exhibits all faults of E2.

Rollback Suggestion. A rollback suggestion provides a subset of the diff, such
that its removal from the diff would fix all faults.

Definition 5 (Rollback Suggestion). A rollback suggestion is a subset δE× ⊆
∆E1→2 such that P (E1 ⊎ (∆E1→2 \ δE×)) does not produce any faults of E2.

Ideally, fault localizations and rollback suggestions should be of minimal size.

4.2 Fault Localization

In the context of incremental Datalog, the fault localization problem provides a
small subset of the incremental changes that allow the fault to be reproduced.

We begin by considering a basic version of the fault localization problem. In
this basic version, we have a positive Datalog program (i.e., with no negation),
and we localize a set of faults that are undesirable but appear (i.e., P (E)∩ I−).
The main idea of the fault localization algorithm is to compute a proof tree for
each fault tuple. The tuples forming these proof trees are sufficient to localize
the faults since these tuples allow the proof trees to be valid and, thus, the fault
tuples to be reproduced.

Algorithm 1 Localize-Faults(P , E2, ∆E1→2, F ): Given a diff ∆E1→2 and a set
of fault tuples F , returns δE ⊆ ∆E1→2 such that E1 ⊎ δE produces all t ∈ F

1: for tuple t ∈ F do
2: Let inc-prov(t,∆E1→2) be an incremental proof tree of t w.r.t P and E2, con-

taining tuples that were inserted due to ∆E1→2

3: return ∪t∈F (inc-prov(t,∆E1→2) ∩∆E1→2)

The basic fault localization is presented in Alg. 1. For each fault tuple t ∈ F ,
the algorithm computes one incremental proof tree inc-prov(t,∆E1→2). These
proof trees contain the set of tuples that were inserted due to the incremental
update ∆E1→2 and cause the existence of each fault tuple t. Therefore, by re-
turning the union ∪t∈F (inc-prov(t,∆E1→2) ∩∆E1→2), the algorithm produces
a subset of ∆E1→2 that reproduces the faults.

4.3 Rollback Repair

The rollback repair algorithm produces a rollback suggestion. As with fault lo-
calization, we begin with a basic version of the rollback problem, where we have
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only a positive Datalog program and wish to roll back a set of unwanted fault tu-
ples. The basic rollback repair algorithm involves computing all non-cyclic proof
trees for each fault tuple and ‘disabling’ each of those proof trees, as shown in
Alg. 2. If all proof trees are invalid, the fault tuple will no longer be computed
by the resulting EDB.

Algorithm 2 Rollback-Repair(P , E2, ∆E1→2, F ): Given a diff ∆E1→2 and a
set of fault tuples F , return a subset δE ⊆ ∆E1→2 such that E1⊎ (∆E1→2 \ δE)
does not produce tr

1: Let all-inc-prov(t,∆E1→2) = {T1, . . . , Tn} be the total incremental provenance for
a tuple t w.r.t P and E2, where each Ti is a non-cyclic proof tree containing tuples
inserted due to ∆E1→2.
Construct an integer linear program instance as follows:

2: Create a 0/1 integer variable xtk for each tuple tk that occurs in the proof trees in
all-inc-prov(t,∆E1→2) for each fault tuple t ∈ F

3: for each tuple tf ∈ F do
4: for each proof tree Ti ∈ all-inc-prov(t,∆E1→2) do
5: for each line th ← t1 ∧ . . . ∧ tk in Ti do
6: Add a constraint xt1 + . . .+ xtk − xth ≤ k − 1

7: Add a constraint xtf = 0

8: Add the objective function maximize
∑

te∈EDB xte

9: Solve the ILP
10: Return {t ∈ ∆E1→2 | xt = 0}

Alg. 2 computes a minimum subset of the diff ∆E1→2, which would prevent
the production of each t ∈ F when excluded from the diff. The key idea is to
use integer linear programming (ILP) [33] as a vehicle to disable EDB tuples so
that the fault tuples vanish in the IDB. We phrase the proof trees as a pseudo-
Boolean formula [22] whose propositions represent the EDB and IDB tuples.
In the ILP, the faulty tuples are constrained to be false, and the EDB tuples
assuming the true value are to be maximized, i.e., we wish to eliminate the least
number of tuples in the EDB for repair. The ILP created in Alg. 2 introduces a
variable for each tuple (either IDB or EDB) that appears in all incremental proof
trees for the fault tuples. For the ILP model, we have three types of constraints:
(1) to encode a single-step proof, (2) to enforce that fault tuples are false, and
(3) to ensure that variables are in the 0-1 domain. The constraints encoding
proof trees correspond to each one-step derivation which can be expressed as a
Boolean constraint t1 ∧ . . .∧ tk =⇒ th for the rule application, where t1, . . . , tk
and th are Boolean variables. Using propositional logic rules, this is equivalent
to t1 ∨ . . . ∨ tk ∨ th. This formula is then transformed into a pseudo (linear)
Boolean formula where φ maps a Boolean function to the 0− 1 domain, and xt
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corresponds to the 0-1 variable of proposition t in the ILP.

φ
(
t1 ∨ . . . ∨ tk ∨ th

)
≡ (1− xt1) + . . .+ (1− xtk) + th > 0

≡ xt1 + . . .+ xtk − xth ≤ k − 1

The constraints assuming false values for fault tuples tf ∈ F are simple
equalities, i.e., xtf = 0. The objective function for the ILP is to maximize the
number of inserted tuples that are kept, which is equivalent to minimizing the
number of tuples in ∆E1→2 that are disabled by the repair. In ILP form, this is
expressed as maximizing

∑
t∈∆E1→2

t.

max.
∑

t∈∆E1→2
xt

s.t. xt1 + . . . xtk − xth ≤ k − 1 (∀th ⇐ t1 ∧ . . . ∧ tk ∈ Ti)
xtf = 0 (∀tf ∈ F )
xt ∈ {0, 1} (∀tuples t)

The solution of the ILP permits us to determine the EDB tuples for repair:

δE = {t ∈ ∆E1→2 | xt = 0}

This is a minimal set of inserted tuples that must be removed from ∆E1→2 so
that the fault tuples disappear.

This ILP formulation encodes the problem of disabling all proof trees for all
fault tuples while maximizing the number of inserted tuples kept in the result.
If there are multiple fault tuples, the algorithm computes proof trees for each
fault tuple and combines all proof trees in the ILP encoding. The result is a set
of tuples that is minimal but sufficient to prevent the fault tuples from being
produced.

4.4 Extensions

Missing Tuples. The basic versions of the fault localization and rollback repair
problem only handle a tuple which is undesirable but appears. The opposite
kind of fault, i.e., a tuple which is desirable but missing, can be localized or
repaired by considering a dual version of the problem. For example, consider a
tuple t that disappears after applying a diff ∆E1→2, and appears in the update
in the opposite direction, ∆E2→1. Then, the dual problem of localizing the dis-
appearance of t is to rollback the appearance of t after applying the opposite
diff, ∆E2→1.

To localize a disappearing tuple t, we want to provide a small subset δE of
∆E1→2 such that t is still not computable after applying δE to E1. To achieve
this, all ways to derive t must be invalid after applying δE. Considering the dual
problem, rolling back the appearance of t in ∆E2→1 results in a subset δE such
that E2 ⊎ (∆E2→1 \ δE) does not produce t. Since E1 = E2 ⊎∆E2→1, if we were
to apply the reverse of δE (i.e., insertions become deletions and vice versa), we
would arrive at the same EDB set as E2 ⊎ (∆E2→1 \ δE). Therefore, the reverse
of δE is the desired minimal subset that localizes the disappearance of t.
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Similarly, to roll back a disappearing tuple t, we apply the dual problem of
localizing the appearance of t after applying the opposite diff ∆E2→1. Here, to
roll back a disappearing tuple, we introduce one way of deriving t. Therefore,
localizing the appearance of t in the opposite diff provides one derivation for t and
thus is the desired solution. In summary, to localize or rollback a tuple t that is
missing after applying ∆E1→2, we compute a solution for the dual problem. The
dual problem for localization is to roll back the appearance of t after applying
∆E2→1, and similarly, the dual problem for rollback is localization.

Stratified Negation. Stratified negation is a common extension for Datalog. With
stratified negation, atoms in the body of a Datalog rule may appear negated, e.g.,
Rh(Xh) :- R1(X1), . . . , !Rk(Xk), . . . , Rn(Xn). The negated atoms are denoted
with !, and any variables contained in negated atoms must also exist in some pos-
itive atom in the body of the rule (a property called groundedness). Semantically,
negations are satisfied if the instantiated tuple does not exist in the correspond-
ing relation. The ‘stratified’ in ‘stratified negation’ refers to the property that no
cyclic negations can exist. For example, the rule A(x) :- B(x, y), !A(y) causes a
dependency cycle where A depends on the negation of A and thus is not allowed
under stratified negation.

Consider the problem of localizing the appearance of an unwanted tuple t. If
the Datalog program contains stratified negation, then the appearance of t can
be caused by two possible situations. Either (1) there is a positive tuple in the
proof tree of t that appears, or (2) there is a negated tuple in the proof tree of
t that disappears. The first case is the standard case, but in the second case,
if a negated tuple disappears, then its disappearance can be localized or rolled
back by computing the dual problem as in the missing tuple strategy presented
above. We may encounter further negated tuples in executing the dual version of
the problem. For example, consider the set of Datalog rules A(x) :- B(x), !C(x)
and C(x) :- D(x), !E(x). If we wish to localize an appearing (unwanted) tuple
A(x), we may encounter a disappearing tuple C(x). Then, executing the dual
problem, we may encounter an appearing tuple E(x). We can generally continue
flipping between the dual problems to solve the localization or repair problem.
This process is guaranteed to terminate due to the stratification of negations.
Each time the algorithm encounters a negated tuple, it must appear in an earlier
stratum than the previous negation. Therefore, eventually, the negations will
reach the input EDB, and the process terminates.

4.5 Full Algorithm

The full rollback repair algorithm presented in Alg. 3 incorporates the basic
version of the problem and all of the extensions presented above. The result of
the algorithm is a rollback suggestion, which fixes all faults. Alg. 3 begins by
initializing the EDB after applying the diff (line 1) and separate sets of unwanted
faults (lines 2) and missing faults (3). The set of candidate tuples forming the
repair is initialized to be empty (line 4).
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Algorithm 3 Full-Rollback-Repair(P , E1, ∆E1→2, (I+, I−)): Given a diff
∆E1→2 and an intended semantics (I+, I,), compute a subset δE ⊆ ∆E1→2

such that ∆E1→2 \ δE satisfies the intended semantics
1: Let E2 be the EDB after applying the diff: E1 ⊎∆E1→2

2: Let F+ be appearing unwanted faults: {I− ∩ P (E2)}
3: Let F− be missing desirable faults: {I+ \ P (E2)}
4: Let L be the set of repair tuples, initialized to ∅
5: while both F+ and F− are non-empty do
6: Add Rollback-Repair(P , E2, ∆E1→2, F+) to L
7: for negated tuples !t ∈ L do
8: Add t to F−

9: Clear F+

10: Add Localize-Faults(P , E1, ∆E2→1, F−) to L
11: for negated tuples !t ∈ L do
12: Add t to F+

13: Clear F−

14: return L

The main part of the algorithm is a worklist loop (lines 5 to 13). In this loop,
the algorithm first processes all unwanted but appearing faults (F+, line 6) by
computing the repair of F+. The result is a subset of tuples in the diff such
that the faults F+ no longer appear when the subset is excluded from the diff.
In the provenance system, negations are treated as EDB tuples, and thus the
resulting repair may contain negated tuples. These negated tuples are added to
F− (line 7) since a tuple appearing in F+ may be caused by a negated tuple
disappearing. The algorithm then repairs the tuples in F− by computing the
dual problem, i.e., localizing F− with respect to ∆E2→1. Again, this process
may result in negated tuples, which are added to F+, and the loop begins again.
This worklist loop must terminate, due to the semantics of stratified negation, as
discussed above. At the end of the worklist loop, L contains a candidate repair.

While Alg. 3 presents a full algorithm for rollback, the fault localization
problem can be solved similarly. Since rollback and localization are dual prob-
lems, the full fault localization algorithm swaps Rollback-Repair in line 6 and
Localize-Faults in line 10.

Example We demonstrate how our algorithms work by using our running ex-
ample. Recall that we introduce an incremental update consisting of inserting
two tuples assign(upgradedSession, userSession) and load(userSession,
admin, session). As a result, the system computes the unwanted fault tuple
alias(userSession, sec). To rollback the appearance of the fault tuple, the
algorithms start by computing its provenance, as shown in Figure 3. The algo-
rithm then creates a set of ILP constraints, where each tuple (with shortened
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variables) represents an ILP variable:

maximize
∑

load(u, a, s) such that

load(u, a, s)− vpt(u, L2) ≤ 0, vpt(u, L2)− alias(u, s) ≤ 0, alias(u, s) = 0

For this simple ILP, the result indicates that the insertion of load(userSession,
admin, session) should be rolled back to fix the fault.

5 Experiments

This section evaluates our technique on real-world benchmarks to determine its
effectiveness and applicability. We consider the following research questions:
– RQ1: Is the new technique faster than a delta-debugging strategy?
– RQ2: Does the new technique produce more precise localization/repair can-

didates than delta debugging?

Experimental Setup: 4 We implemented the fault localization and repair al-
gorithms using Python5. The Python code calls out to an incremental version
of the Soufflé Datalog engine [40] extended with incremental provenance. Our
implementation of incremental provenance uses the default metric of minimiz-
ing proof tree height, as it provides near-optimal repairs with slight runtime
improvements. For solving integer linear programs, we use the GLPK library.

Our main point of comparison in our experimental evaluation is the delta
debugging approach, such as that used in the ProSynth Datalog synthesis frame-
work [30]. We adapted the implementation of delta debugging used in ProSynth
to support input tuple updates. Like our fault repair implementation, the delta
debugging algorithm was implemented in Python; however, it calls out to the
standard Soufflé engine since that provides a lower overhead than the incremen-
tal or provenance versions.

For our benchmarks, we use the Doop program analysis framework [8] with
the DaCapo set of Java benchmarks [7]. The analysis contains approx. 300 rela-
tions, 850 rules, and generates approx. 25 million tuples from an input size of 4-9
million tuples per DaCapo benchmark. For each of the DaCapo benchmarks, we
selected an incremental update containing 50 tuples to insert and 50 tuples to
delete, which is representative of the size of a typical commit in the underlying
source code. From the resulting IDB changes, we selected four different arbitrary
fault sets for each benchmark, which may represent an analysis error.

Performance: The results of our experiments are shown in Table 1. Our fault
repair technique performs much better overall compared to the delta debugging
technique. We observe a geometric mean speedup of over 26.9× 6 compared to
4 We use an Intel Xeon Gold 6130 with 192 GB RAM, GCC 10.3.1, and Python 3.8.10
5 Available at github.com/davidwzhao/souffle-fault-localization
6 We say “over” because we bound timeouts to 7200 seconds.
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Table 1: Repair size and runtime of our technique compared to delta debugging
Rollback Repair Delta Debugging

Program No. Size Overall (s) Local(s) Repair(s) Size Runtime (s) Speedup
antlr 1 2 73.6 0.51 73.1 3 3057.8 41.5

2 1 79.4 0.00 79.4 1 596.5 7.5
3 1 0.95 0.95 - 1 530.8 558.7
4 2 77.8 1.89 75.9 3 3017.6 38.8

bloat 1 2 3309.5 0.02 3294.1 2 2858.6 0.9
2 1 356.3 0.00 355.4 1 513.6 1.4
3 1 0.33 0.33 - 1 557.7 1690.0
4 3 3870.6 0.10 3854.7 2 2808.3 0.7

chart 1 1 192.6 0.00 192.6 1 685.0 3.6
2 1 3.01 3.01 - 1 675.3 224.4
3 1 78.8 0.00 78.8 1 667.6 8.5
4 2 79.9 3.24 76.7 3 3001.1 37.6

eclipse 1 2 177.3 0.04 177.2 3 2591.2 14.6
2 1 79.2 0.00 79.1 1 416.1 5.3
3 1 0.12 0.12 - 1 506.3 4219.2
4 3 91.9 0.09 91.8 3 2424.4 26.4

fop 1 2 83.8 0.05 83.8 2 3446.6 41.1
2 1 76.9 0.00 76.9 1 670.7 8.7
3 1 0.66 0.66 - 1 721.8 1093.6
4 6 74.8 0.50 74.3 Timeout (7200) 96.3+

hsqldb 1 2 83.3 0.04 83.3 2 2979.2 35.8
2 1 79.4 0.00 79.4 1 433.8 5.5
3 1 74.0 0.00 74.0 1 663.1 9.0
4 3 75.5 0.04 75.5 5 6134.8 81.3

jython 1 1 83.3 0.00 83.3 1 609.4 7.3
2 1 78.2 0.00 78.2 1 590.4 7.5
3 1 76.6 0.00 76.6 1 596.2 7.8
4 1 75.8 0.00 75.8 1 587.6 7.8

luindex 1 2 81.3 0.07 81.2 3 2392.1 29.4
2 1 79.8 0.00 79.8 1 511.0 6.4
3 1 0.10 0.10 - 1 464.8 4648.0
4 4 77.9 0.12 77.8 5 4570.4 58.7

lusearch 1 2 110.2 0.06 110.0 3 2558.8 23.2
2 1 1062.1 0.00 1057.4 1 370.4 0.3
3 1 0.12 0.12 - 1 369.6 3080.0
4 2 294.2 0.06 293.2 3 2420.9 8.2

pmd 1 2 78.1 0.02 78.1 3 3069.8 39.3
2 1 77.0 0.00 77.0 1 600.2 7.8
3 1 0.08 0.08 - 1 717.8 8972.5
4 3 74.3 0.08 74.2 3 2828.3 38.1

xalan 1 1 84.9 0.00 84.9 1 745.3 8.8
2 1 82.2 0.00 82.2 1 728.9 8.9
3 1 100.1 0.00 100.1 1 1243.7 12.4
4 1 521.6 0.00 518.3 1 712.5 1.4
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delta debugging. For delta debugging, the main cause of performance slowdown
is that it is a black-box search technique, and it requires multiple iterations of
invoking Soufflé (between 6 and 19 invocations for the presented benchmarks)
to direct the search. This also means that any intermediate results generated in
a previous Soufflé run are discarded since no state is kept to allow the reuse of
results. Each invocation of Soufflé takes between 30-50 seconds, depending on
the benchmark and EDB. Thus, the overall runtime for delta debugging is in
the hundreds of seconds at a minimum. Indeed, we observe that delta debugging
takes between 370 and 6135 seconds on our benchmarks, with one instance timing
out after two hours (7200 seconds).

On the other hand, our rollback repair technique calls for provenance in-
formation from an already initialized instance of incremental Soufflé. This in-
crementality allows our technique to reuse the already computed IDB for each
provenance query. For eight of the benchmarks, the faults only contained missing
tuples. Therefore, only the Localize-Faults method was called, which only com-
putes one proof tree for each fault tuple and does not require any ILP solving.
The remainder of the benchmarks called the Rollback-Repair method, where the
main bottleneck is for constructing and solving the ILP instance. For three of
the benchmarks, bloat-1, bloat-4, and lusearch-2, the runtime was slower
than delta debugging. This result is due to the fault tuples in these benchmarks
having many different proof trees, which took longer to compute. In addition,
this multitude of proof trees causes a larger ILP instance to be constructed,
which took longer to solve.

Quality: While the delta debugging technique produces 1-minimal results, we
observe that despite no overall optimality guarantees, our approach was able to
produce more minimal repairs in 27% of the benchmarks. Moreover, our rollback
repair technique produced a larger repair in only one of the benchmarks. This
difference in quality is due to the choices made during delta debugging. Since
delta debugging has no view of the internals of Datalog execution, it can only
partition the EDB tuples randomly. Then, the choices made by delta debugging
may lead to a locally minimal result that is not globally optimal. For our fault
localization technique, most of the benchmarks computed one iteration of repair
and did not encounter any negations. Therefore, due to the ILP formulation,
the results were optimal in these situations. Despite our technique overall not
necessarily being optimal, it still produces high-quality results in practice.

6 Related Work

Logic Programming Input Repair. A plethora of logic programming paradigms
exist that can express diagnosis and repair by EDB regeneration [25,16,18,13].
Unlike these logic programming paradigms, our technique is designed to be em-
bedded in high-performance modern Datalog engines. Moreover, our approach
can previous computations (proof trees and incremental updates) to localize and
repair only needed tuples. This bounds the set of repair candidates and results in
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apparent speedups. Other approaches, such as the ABC Repair System [27], use
a combination of provenance-like structures and user-guided search to localize
and repair faults. However, that approach is targeted at the level of the Datalog
specification and does not always produce effective repairs. Techniques such as
delta debugging have recently been used to perform state-of-the-art synthesis of
Datalog programs efficiently [30]. Our delta debugging implementation adapts
this method, given it produces very competitive synthesis performance and can
be easily re-targeted to diagnose and repair inputs.

Database Repair. Repairing inconsistent databases with respect to integrity con-
straints has been extensively investigated in the database community [15,9,3,17].
Unlike our approach, integrity constraints are much less expressive than Data-
log; in particular, they do not allow fixpoints in their logic. The technique in [17]
shares another similarity in that it also presents repair for incremental SQL eval-
uation. However, this is limited to relational algebra, i.e., SQL and Constrained
Functional Dependencies (CFDs) that are less expressive than Datalog. A more
related variant of database repair is consistent query answering (CQA)[9,3].
These techniques repair query answers given a database, integrity constraints
and an SQL query. Similarly, these approaches do not support recursive queries,
as can be expressed by Datalog rules.

Program Slicing. Program slicing [35,5,14,21] encompasses several techniques
that aim to compute portions (or slices) of a program that contribute to a par-
ticular output result. For fault localization and debugging, program slicing can
be used to localize slices of programs that lead to a fault or error. The two main
approaches are static program slicing, which operates on a static control flow
graph, and dynamic program slicing, which considers the values of variables or
execution flow of a particular execution. As highlighted by [11], data provenance
is closely related to slicing. Therefore, our technique can be seen as a form of
static slicing of the Datalog EDB with an additional rollback repair stage.

7 Conclusion

We have presented a new debugging technique that localizes faults and provides
rollback suggestions for Datalog program inputs. Unlike previous approaches, our
technique does not entirely rely on a black-box solver to perform the underlying
repair. Instead, we utilize incremental provenance information. As a result, our
technique exhibits speedups of 26.9× compared to delta debugging and finds
more minimal repairs 27% of the time.

There are also several potential future directions for this research. One is to
adapt our technique to repair changes in Datalog rules, as well as changes in
input tuples. Another direction is to adopt these techniques for different domain
areas outside the use cases of program analyses.

Acknowledgments M.R. was funded by U.S. NSF grants CCF-2146518, CCF-
2124431, and CCF-2107261.
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