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Abstract. Datalog has become popular as a specification language for
static program analyzers. However, when deployed in real-world appli-
cations, classical Datalog engine and vanilla Datalog languages are in-
sufficient for dealing with challenges such as scale and expressiveness for
phrasing static analyzers. In this position paper, we present the design of
the Datalog engine Soufflé for real-world static program analyzers. We
outline several key innovations concerning language design, evaluation
techniques and usability.

Introduction

Over the last 30 years, static program analysis has been frequently suggested as a
fitting use case for Datalog. In this setup, the Datalog language acts as a concise
domain-specific language for specifying the semantics of static analysis with its
subset lattice domains. As a result, the Datalog engine becomes a powerful fix-
point machinery that computes the least fix-point solution to the static analysis
problem. In practice, however, standard Datalog dialects and engines have their
limitations in crafting a real-world static analyzer. Industrial-grade static ana-
lyzers are a significant engineering undertaking and require to scale to problems
within time, memory and precision bounds dictated by an organization’s service
level agreement (SLA). Standard techniques implementing Datalog engines do
not scale compared to static analyzers crafted with non-declarative languages
because expressing a static analyzer in simple Horn clauses is too terse and
cumbersome to express an industrial-grade static analysis. In this position pa-
per, we outline our experience developing Soufflé [3]: a Datalog engine designed
and implemented for static code analysis. We showcase several innovations in
language design, evaluation and debugging that have made Soufflé popular for
developing a diverse range of real-world static analyses [4, 3, 5, 6].

Language.

We refer the reader to [1] for a detailed description of standard Datalog. Here, we
discuss the differences between conventional Datalog use cases in the Database
realm and the program analysis use case and what extensions are needed to ex-
press analyzers rapidly. Use cases like graph databases typically have vast data
sets with a few rules that model queries. In contrast, real-world static analyses
require thousands of rules, hundreds of relations with complex recursion, and
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access patterns. Thus, Datalog, in this context, resembles a logical specification
language that requires a considerable software engineering effort. Therefore, in
Soufflé, we have implemented several language features that aid reuse, expres-
siveness, and flexibility. We have implemented meta-level constructs such as
components, Abstract Data Types (ADTs), a type system, and pre-processing
directives to enable abstraction and reuse. These mechanisms allow for easier
reuse, as has been shown by the Doop static analysis library implemented with
the Soufflé language. There are also semantic subtleties in expressing static an-
alyzers in Datalog. For example, in program analysis, we require richer domains
to model other things than subset lattices (the only domain standard Datalog
would permit) like context sensitivity, paths, states etc. Therefore in Soufflé,
we have implemented several domains, including numbers, records, and strings.
The operations on these domains require built-in functors. As a consequence
of allowing Datalog to operate on these domains, we no longer provide termi-
nation guarantees. Recently, we have extended Soufflé so that set subsumption
can be performed via subsumptive rules, allowing complex lattices with dele-
tions to be expressed. Although we have extended semantics such as the Choice
construct [7], we acknowledge that static analyzers must interface with external
systems or require code best done in imperative languages such as C. We thus
provide external functors where this code can be integrated as a functor in a
Datalog rule.

Evaluation.

The standard static analysis workflow allows for the ruleset to be programmed
before execution. Thus Soufflé compiles Datalog rules to highly specialized con-
current C++ code [3]. This specialization process performs various optimiza-
tions at compile time, including index selection [13] and join optimizations [2].
Users can select from a number of indexing data structures [11] including a con-
current BTree [10], Brie [9] or EqRel [12] data structure. Besides the compila-
tion system, Soufflé provides a high-performance interpreter [8] that permits use
cases whose rules/programs change on-the-fly. A high-performance interpreter
using de-specialized data structures executes programs approximately two orders
slower than the compiled version but has no compilation overhead, which can be
significant for large Datalog programs. Moreover, several program analysis use
cases, such as static analysis in development pipelines, can utilize incremental
evaluation to avoid unnecessary re-computations. Soufflé provides a unique elas-
tic incremental evaluation mechanism [14] that selectively performs incremental
evaluation.

Usability.

As with any large software engineering effort, static analyzers require debugging
support. Therefore, Soufflé provides proof annotations [15] that allow developers
to construct minimal proof trees to understand better how their ruleset resulted
in the existence or non-existence of a tuple.
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