
Designing a Datalog Engine for Industrial-Grade
Static Analysis

Pavle Subotić1 and Bernhard Scholz2

1 Microsoft, Serbia
2 University of Sydney, Australia

Abstract. Datalog has become popular as a specification language for
static program analyzers. However, when deployed in real-world appli-
cations, classical Datalog engine and vanilla Datalog languages are in-
sufficient for dealing with challenges such as scale and expressiveness for
phrasing static analyzers. In this position paper, we present the design of
the Datalog engine Soufflé for real-world static program analyzers. We
outline several key innovations concerning language design, evaluation
techniques and usability.

Introduction

Over the last 30 years, static program analysis has been frequently suggested as a
fitting use case for Datalog. In this setup, the Datalog language acts as a concise
domain-specific language for specifying the semantics of static analysis with its
subset lattice domains. As a result, the Datalog engine becomes a powerful fix-
point machinery that computes the least fix-point solution to the static analysis
problem. In practice, however, standard Datalog dialects and engines have their
limitations in crafting a real-world static analyzer. Industrial-grade static ana-
lyzers are a significant engineering undertaking and require to scale to problems
within time, memory and precision bounds dictated by an organization’s service
level agreement (SLA). Standard techniques implementing Datalog engines do
not scale compared to static analyzers crafted with non-declarative languages
because expressing a static analyzer in simple Horn clauses is too terse and
cumbersome to express an industrial-grade static analysis. In this position pa-
per, we outline our experience developing Soufflé [3]: a Datalog engine designed
and implemented for static code analysis. We showcase several innovations in
language design, evaluation and debugging that have made Soufflé popular for
developing a diverse range of real-world static analyses [4, 3, 5, 6].

Language.

We refer the reader to [1] for a detailed description of standard Datalog. Here, we
discuss the differences between conventional Datalog use cases in the Database
realm and the program analysis use case and what extensions are needed to ex-
press analyzers rapidly. Use cases like graph databases typically have vast data
sets with a few rules that model queries. In contrast, real-world static analyses
require thousands of rules, hundreds of relations with complex recursion, and



2 Pavle Subotić and Bernhard Scholz

access patterns. Thus, Datalog, in this context, resembles a logical specification
language that requires a considerable software engineering effort. Therefore, in
Soufflé, we have implemented several language features that aid reuse, expres-
siveness, and flexibility. We have implemented meta-level constructs such as
components, Abstract Data Types (ADTs), a type system, and pre-processing
directives to enable abstraction and reuse. These mechanisms allow for easier
reuse, as has been shown by the Doop static analysis library implemented with
the Soufflé language. There are also semantic subtleties in expressing static an-
alyzers in Datalog. For example, in program analysis, we require richer domains
to model other things than subset lattices (the only domain standard Datalog
would permit) like context sensitivity, paths, states etc. Therefore in Soufflé,
we have implemented several domains, including numbers, records, and strings.
The operations on these domains require built-in functors. As a consequence
of allowing Datalog to operate on these domains, we no longer provide termi-
nation guarantees. Recently, we have extended Soufflé so that set subsumption
can be performed via subsumptive rules, allowing complex lattices with dele-
tions to be expressed. Although we have extended semantics such as the Choice
construct [7], we acknowledge that static analyzers must interface with external
systems or require code best done in imperative languages such as C. We thus
provide external functors where this code can be integrated as a functor in a
Datalog rule.

Evaluation.

The standard static analysis workflow allows for the ruleset to be programmed
before execution. Thus Soufflé compiles Datalog rules to highly specialized con-
current C++ code [3]. This specialization process performs various optimiza-
tions at compile time, including index selection [13] and join optimizations [2].
Users can select from a number of indexing data structures [11] including a con-
current BTree [10], Brie [9] or EqRel [12] data structure. Besides the compila-
tion system, Soufflé provides a high-performance interpreter [8] that permits use
cases whose rules/programs change on-the-fly. A high-performance interpreter
using de-specialized data structures executes programs approximately two orders
slower than the compiled version but has no compilation overhead, which can be
significant for large Datalog programs. Moreover, several program analysis use
cases, such as static analysis in development pipelines, can utilize incremental
evaluation to avoid unnecessary re-computations. Soufflé provides a unique elas-
tic incremental evaluation mechanism [14] that selectively performs incremental
evaluation.

Usability.

As with any large software engineering effort, static analyzers require debugging
support. Therefore, Soufflé provides proof annotations [15] that allow developers
to construct minimal proof trees to understand better how their ruleset resulted
in the existence or non-existence of a tuple.



Designing a Datalog Engine for Industrial-Grade Static Analysis 3

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley Pub-
lishing Company (1995)

2. Arch, S., Hu, X., Zhao, D., Subotic, P., Scholz, B.: Building a join optimizer
for soufflé. In: Villanueva, A. (ed.) Logic-Based Program Synthesis and Trans-
formation - 32nd International Symposium, LOPSTR 2022, Tbilisi, Georgia,
September 21-23, 2022, Proceedings. Lecture Notes in Computer Science, vol.
13474, pp. 83–102. Springer (2022). https://doi.org/10.1007/978-3-031-16767-6 5,
https://doi.org/10.1007/978-3-031-16767-6 5

3. Backes, J., Bayless, S., Cook, B., Dodge, C., Gacek, A., Hu, A.J., Kahsai, T., Kocik,
B., Kotelnikov, E., Kukovec, J., McLaughlin, S., Reed, J., Rungta, N., Sizemore,
J., Stalzer, M.A., Srinivasan, P., Subotic, P., Varming, C., Whaley, B.: Reacha-
bility analysis for aws-based networks. In: Dillig, I., Tasiran, S. (eds.) Computer
Aided Verification - 31st International Conference, CAV 2019, New York City, NY,
USA, July 15-18, 2019, Proceedings, Part II. Lecture Notes in Computer Science,
vol. 11562, pp. 231–241. Springer (2019). https://doi.org/10.1007/978-3-030-25543-
5 14, https://doi.org/10.1007/978-3-030-25543-5 14

4. Bravenboer, M., Smaragdakis, Y.: Strictly declarative spec-
ification of sophisticated points-to analyses. SIGPLAN Not.
44(10), 243–262 (2009). https://doi.org/10.1145/1639949.1640108,
http://doi.acm.org/10.1145/1639949.1640108

5. Flores-Montoya, A., Schulte, E.: Datalog disassembly. In: Proceedings of the 29th
USENIX Conference on Security Symposium. SEC’20, USENIX Association, USA
(2020)

6. Grech, N., Brent, L., Scholz, B., Smaragdakis, Y.: Gigahorse: Thor-
ough, declarative decompilation of smart contracts. In: Proceedings of
the 41st International Conference on Software Engineering. p. 1176–1186.
ICSE ’19, IEEE Press (2019). https://doi.org/10.1109/ICSE.2019.00120,
https://doi.org/10.1109/ICSE.2019.00120

7. Hu, X., Karp, J., Zhao, D., Zreika, A., Wu, X., Scholz, B.: The choice
construct in the soufflé language. In: Oh, H. (ed.) Programming Languages
and Systems - 19th Asian Symposium, APLAS 2021, Chicago, IL, USA,
October 17-18, 2021, Proceedings. Lecture Notes in Computer Science, vol.
13008, pp. 163–181. Springer (2021). https://doi.org/10.1007/978-3-030-89051-
3 10, https://doi.org/10.1007/978-3-030-89051-3 10

8. Hu, X., Zhao, D., Jordan, H., Scholz, B.: An efficient interpreter for dat-
alog by de-specializing relations. In: Freund, S.N., Yahav, E. (eds.) PLDI
’21: 42nd ACM SIGPLAN International Conference on Programming Lan-
guage Design and Implementation, Virtual Event, Canada, June 20-25,
2021. pp. 681–695. ACM (2021). https://doi.org/10.1145/3453483.3454070,
https://doi.org/10.1145/3453483.3454070

9. Jordan, H., Subotic, P., Zhao, D., Scholz, B.: Brie: A specialized trie for con-
current datalog. In: Chen, Q., Huang, Z., Si, M. (eds.) Proceedings of the
10th International Workshop on Programming Models and Applications for Mul-
ticores and Manycores, PMAM@PPoPP 2019, Washington, DC, USA, Febru-
ary 17, 2019. pp. 31–40. ACM (2019). https://doi.org/10.1145/3303084.3309490,
https://doi.org/10.1145/3303084.3309490

10. Jordan, H., Subotic, P., Zhao, D., Scholz, B.: A specialized b-tree for con-
current datalog evaluation. In: Hollingsworth, J.K., Keidar, I. (eds.) Proceed-
ings of the 24th ACM SIGPLAN Symposium on Principles and Practice of



4 Pavle Subotić and Bernhard Scholz

Parallel Programming, PPoPP 2019, Washington, DC, USA, February 16-
20, 2019. pp. 327–339. ACM (2019). https://doi.org/10.1145/3293883.3295719,
https://doi.org/10.1145/3293883.3295719

11. Jordan, H., Subotic, P., Zhao, D., Scholz, B.: Specializing parallel data
structures for datalog. Concurr. Comput. Pract. Exp. 34(2) (2022).
https://doi.org/10.1002/cpe.5643, https://doi.org/10.1002/cpe.5643

12. Nappa, P., Zhao, D., Subotic, P., Scholz, B.: Fast parallel equivalence relations
in a datalog compiler. In: 28th International Conference on Parallel Architec-
tures and Compilation Techniques, PACT 2019, Seattle, WA, USA, September
23-26, 2019. pp. 82–96. IEEE (2019). https://doi.org/10.1109/PACT.2019.00015,
https://doi.org/10.1109/PACT.2019.00015

13. Subotic, P., Jordan, H., Chang, L., Fekete, A.D., Scholz, B.: Automatic
index selection for large-scale datalog computation. Proc. VLDB En-
dow. 12(2), 141–153 (2018). https://doi.org/10.14778/3282495.3282500,
http://www.vldb.org/pvldb/vol12/p141-subotic.pdf

14. Zhao, D., Subotic, P., Raghothaman, M., Scholz, B.: Towards elas-
tic incrementalization for datalog. In: Veltri, N., Benton, N., Ghilezan,
S. (eds.) PPDP 2021: 23rd International Symposium on Principles and
Practice of Declarative Programming, Tallinn, Estonia, September 6-8,
2021. pp. 20:1–20:16. ACM (2021). https://doi.org/10.1145/3479394.3479415,
https://doi.org/10.1145/3479394.3479415

15. Zhao, D., Subotic, P., Scholz, B.: Debugging large-scale datalog: A scalable prove-
nance evaluation strategy. ACM Trans. Program. Lang. Syst. 42(2), 7:1–7:35
(2020). https://doi.org/10.1145/3379446, https://doi.org/10.1145/3379446


