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Abstract13

There is a trend in blockchains to switch to DAG-based consensus protocols to decrease their energy14

footprint and improve security. A DAG-based consensus protocol orders transactions for delivering15

blocks, and relies on built-in fault tolerance communications via Byzantine Atomic Broadcasts.16

The ubiquity and strategic importance of blockchains call for formal proof of their correctness.17

We formalize the DAG-based consensus protocol called DAG-Rider in TLA+ and prove its safety18

properties with the TLA+ proof system. The formalization requires a refinement approach for19

modelling the consensus. In an abstracted model, we first show the safety of DAG-based consensus20

on leaders and then further refine the specification to encompass all messages for all processes. The21

specification consists of 683 lines and the proof system verifies 1922 obligations in about 5 minutes.22
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Consensus and DAG-based protocols. Consensus is a fundamental problem in26

distributed computing. It aims to coordinate processes so that they agree on some value(s).27

Consensus algorithms have recently become an important topic in “proof-of-stake” blockchains28

that collaboratively build an order for submitted transactions. Of particular interest are29

consensus algorithms that assume little about the environment, namely, asynchronous30

communications with malicious processes, namely Byzantine Fault Tolerant (BFT) [15].31

Early blockchain consensus protocols assume degrees of synchrony in the environment32

to ensure safety and liveness [16, 2, 11, 8]. Recently, a family of probabilistic asynchronous33

consensus protocols have been introduced that are based on Directed Acyclic Graphs (DAG-34

based protocols) [10, 1, 6]. These protocols report high performance while guaranteeing BFT,35

utilize processes fairly, and exhibit low communication complexity. Several leading blockchains36

thus have adopted DAG-based protocols as their main consensus mechanism [4, 5, 9].37

DAG-Rider [10] is such a DAG-based protocol and has two main components: (1) a com-38

munication layer and (2) an offline ordering layer. The communication layer asynchronously39

exchanges messages between processes in rounds using reliable broadcast. Messages contain40

transaction proposals and metadata forming a DAG for each node. For a process, the DAG41

provides a local view of the order of blocks with respect to happened-before relation [12]. Due42

to the asynchronous nature of the network, processes do not necessarily have the same local43

DAGs at any point in time. However they are guaranteed to have same DAGs eventually.44

The ordering layer selects anchor points, guaranteeing consistent selection across all the45

processes. This allows the DAGs to be locally totally ordered while guaranteeing that all the46
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processes agree on the same total order of messages.47

Formal verification of DAG-based consensus. Blockchains provide mission-critical48

financial services and hence require rigour to show correctness. The verification challenges arise49

from the large number of possible interleaving in an asynchronous environment, the behaviours50

of Byzantine processes, and perhaps even more importantly the fact that correctness should51

hold for any number of participating processes.52

We report here on our TLA+ [13] specification and proof –both publicly available at [7]–53

for a DAG-based consensus protocol using the TLA+ Proof System (TLA-PS) [3].54

Procedural code is commonly modeled in TLA+ by a discrete transition system whose55

traces correspond to possible executions of the code. The naïve translation from the pseudo-56

code (by setting every variable from the protocol, including a variable for each process’s57

current line number, to be a variable in the specification) into a TLA+ specification is not58

viable. While direct, this model is very fine-grained and renders the proofs extremely tedious.59

To obtain a more succinct and tractable model, we employ several abstraction techniques:60

they remove unnecessary details and produce a specification that is amenable to proofs. First,61

we employ a procedural abstraction that ignores all states that are internal to a procedure and62

only represents the input/output behaviour of each procedure in the DAG-Rider protocol.63

For instance, in the wave_ready procedure of [10], the relevant variables are decidedWave,64

deliveredVertices, leadersStack, but not the loop variable w′ or the auxiliary variable v′.65

Second, because we focus on safety properties, we remove component features that are only66

required for liveness and have no impact on the safety proof. For instance, random coin tosses67

can be replaced with deterministic ones. Third, we use memoization to efficiently compute68

the values taken by recursive functions, by introducing a fresh state variable that stores the69

needed information to evaluate recursive functions in a single step. Finally, we separate the70

concerns and break the safety property into two, namely (1) consistent communication and71

(2) consistent leader election. For (1) we model the DAG-construction and show that the72

causal histories agree for a same vertex in the DAG of two different processes 1. For (2), we73

model the consensus protocol and prove that the same leaders are elected and in the same74

order. To obtain a complete yet simple model of the consensus protocol, we observe that it75

only needs reachability information associated with wave leader vertices to commit leaders76

and, therefore, abstract the content of DAG into the so-called leaderReachablity record. We77

combine consensus protocol specifications in DAG construction specifications to obtain one78

of the DAG-Rider protocols. This abstraction is not only interesting for DAG-Rider but79

could be helpful to generalize to other DAG-based protocols.80

Given our faithful specification of DAG-Rider in TLA+, we prove its expected safety81

properties by identifying invariants and proving them within TLA-PS. When using TLA-PS82

and similar proof systems, the most challenging task is to come up with relevant inductive83

invariants (that hold initially and are preserved when taking transitions), see for instance [14].84

For DAG-Rider, to prove the consistency of communication during the DAG construction85

we identified 6 new invariants, and to prove the consistency of leader election we identified86

10 new invariants. We prove each one of the invariants hierarchically by induction.87

Table 1 provides some metrics on our experiments, showing quite reasonable performances88

in terms of verification time. Most importantly, due to the modularity of our specification, we89

argue the effort to adapt proofs is minimal when making small changes to the specification.90

Conclusion. Our work on DAG-Rider is an important and promising step towards a91

general library for specifying and verifying DAG-based consensus protocols. Beyond the92

1 The non equivocation of blocks is guaranteed by reliable broadcast abstraction
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Table 1 Summary of experiments. An obligation is a condition that TLA-PS checks. The time
to check is on a 2.10 GHz CPU with 8 GB of memory, running Windows 11 and TLA-PS v1.4.5.

Metric DAG-Constr. Spec. Consensus Spec. DAG-Rider Spec.
Size of spec. (# loc) 460 250 710
Size of proof (# loc) 521 782 1303
Max level of proof tree nodes 10 9 10
Max degree of proof tree nodes 7 7 7
# obligations in TLA-PS 722 1205 1927
Time to check by TLA-PS (s) 224 87 311

specification of DAG-Rider, our specification reveals interesting insights into developing a93

modular and efficient TLA+ specification that is amenable to proofs in TLA-PS.94
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