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Abstract. Network control planes are highly sophisticated, resulting in
networks that are difficult and error-prone to configure. Although several
network verification tools have been developed to assist network opera-
tors, they are limited and inefficient in handling fault-tolerance policies.
In this paper, we propose a novel SMT encoding to speed up control
plane fault tolerance verification by pruning failed topologies. This en-
coding exploits the observation that the verifier has to check failures only
for the links lying on a set of best paths which can be computed by a
recursive algorithm. We implemented our technique in Minesweeper, a
state-of-the-art SMT-based verifier. Our evaluation shows that the new
encoding speeds up verification by the factor of 3.1-26.9X.

1 Introduction

Correctly configuring modern computer networks is hard due to their size and
complexity. The total lines of the low-level network configuration code may reach
millions [6]. To alleviate network operators’ burden, automatic control plane
verifiers [4,16,1] have been proposed. These tools take network configurations as
input and analyze them to gauge the possible routing behaviours. Then, they
answer questions such as whether router A computes a route to router B, i.e.
reachability policy, or whether router A computes a route to router B regardless
of any number of failed links, i.e. fault-tolerance reachability policy.

SMT-based network verifiers have been successfully employed on large scale
industrial networks [8,9]. These tools encode the network verification problem
in logic and rely on the SMT solver to check the encoded property. For these
verifiers, fault-tolerant policies are particularly challenging. SMT-based veri-
fiers are inefficient in checking fault-tolerance policies, because their algorithms
do not scale to the number of possible failed topologies, which combinatori-
ally grows with the number of failed links. For example, a widely-used verifier
Minesweeper [4] encodes all possible failed topologies using SMT constraints.

To address the combinatorial explosion of the failed topologies, we propose an
SMT encoding that prunes the space of topologies by eliminating those that are
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Fig. 1: Topologies pruned by recursive best path optimization.

guaranteed not to change the verification result. We refer to this encoding as re-
cursive best path optimization (RBP). Our SMT encoding represents information
about best paths using logical constraints, and applies cardinality constraints to
control the number of network failures. This proposed encoding significantly
improves performance of fault tolerance verification in similar tools [4].

We have implemented our proposed approach as the open source tool4 Trail-
blazer, a variant of Minesweeper with the RBP encoding. We have evaluated
Trailblazer on three benchmarks from the zoo topology [14] and a network
from Rocketfuel [17]. The results show that Trailblazer is 3.1-26.9X faster than
Minesweeper, while being able to verify the same policies. Our contributions are
listed as the following:

– A novel SMT encoding for optimising network fault tolerance verification.
– A comprehensive evaluation of Trailblazer on widely-used benchmarks.

2 Motivation

Let V be the nodes of a network, and E ⊆ V ×V be its edges. The SMT-based
verifier Minesweeper encodes the network fault-tolerance verification problem
under k link failures into the formula ψ ∧ ξk ∧ ¬π, where ψ encodes network
behaviour, π is the property of interest, and ξk encodes that the number of
failed links, controlled by the pseudo-boolean variables failede, is bound by k:

ξk , Σe∈Efailede ≤ k (1)

If an SMT solver determines that the formula is unsatisfiable, the policy holds
on all possible network topologies with at most k link failures.

4 https://github.com/rainLiuplus/trailblazer
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Consider an example network in Figure 1, in which each router forwards
traffic via the shortest path. For example, the router v1 reaches the router v5 via
the path e5e3 (Figure 1a). Assume that our goal is to verify the fault tolerance
property that v1 reaches v5 under two link failures. Since the network consists
of seven edges, there are C(7,2) = 21 possible failure topologies. Thus, an SMT
solver implicitly checks the property for the 21 failed topologies, and this number
quickly grows with the size of the network.

Our key observation is that a more efficient encoding that takes into account
the best path semantics of the network protocol can assist SMT solver in checking
the fault tolerance property. Observe that since e5e3 is the shortest path, if the
failures occur in any edges except e5 and e3, the reachability from v1 to v5 is not
affected. Therefore, all the failed topologies in which both e5 are e3 are up can be
pruned. An example of such a topology is given Figure 1b. Moreover, significantly
more topologies can be pruned if we analyze the new best paths that appear after
an edge on the previous best paths fails. Assume that e5 fails. Then, e5e3 no
longer exists, and the network computes a new best path from v1 to v5, e.g.
e1e2 (Figure 1c). Then, we need to only consider all single-edge failures for this
failed topology. Similar to the previous case, the topologies whose dropped links
are not in {e1, e2} can be pruned. Thus, the topologies whose two dropped links
are in {(e5, e6), (e5, e7), (e5, e3), (e5, e4)} can be pruned. An example is given in
Figure 1d. The link e2 can be handled similarly. Totally, this optimisation prunes
17 of 21 topologies. We refer to this optimisation as RBP.

We apply RBP by adding stronger constraints ξk. Instead of the formula 1,
we encode network semantics under link failures it as

ξk , failede5 → AtLeast(1, {failede1 , failede2}) ∧ ...

where failede5 → AtLeast(1, {failede1 , failede2}) states that if e5 fails, the second
failed link should be on the new best path (Figure 1d). This is repeated recur-
sively for all edges on the best paths up to a configurable depth d. This encoding
significantly optimises constraint solving as shown in Section 4.

3 Trailblazer

In this section, we first provide background on network verification, then discuss
the details of Trailblazer.

3.1 Background

For a node v and a destination node dst , a network protocol computes the
forwarding path(s) FPv, a set of sequences of edges for forwarding traffic to dst .
We denote the set of forwarding paths of all nodes to dst as FP , {FPv|v ∈ V }.
A network policy is a predicate φ over FP. For example, Reachabilityv(FP)
states that FPv is not empty. To verify a policy is to check if φ(FP) holds. A
failed link in the network topology changes the forwarding paths. So, to verify a
policy φ under k failed links, we need to check φ on C(|E|, k) failed topologies.
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Predicate (φ) Policy Description

Reachabilityv FPv 6= ∅ Traffic v → dst can reach dst .

Waypoint(v,w) w ∈ nodes(FPv) Traffic v → dst traverses node w.

Isolationv FPv = ∅ Traffic v → dst cannot reach dst .

Balancev |FPv| ≥ 2 Mutiple paths for traffic v → dst.

Table 1: Common Network Policies

Four common network policies are reachability, waypoint, isolation and bal-
ance shown in Table 1. Note that the balance policy is the only one that deals
with sets of best paths.

Minesweeper is an SMT-based network verifier, which reduces the verifica-
tion problem to an SMT problem. Minesweeper’s encoding given in Section 2 is
described in more details in sections 3-5 of their paper [4].

3.2 Our Approach

Trailblazer improves the SMT encoding of Minesweeper using additional con-
straints that capture network semantics under failures, and optimises the encod-
ing using cardinality constraints. The key intuition of our optimisation is that
failed links outside of the best path do not affect the network semantics. To
capture this intuition, we add extra constraint λL to restrict the failure model:

λL , Σe∈Lfailede ≥ 1 (2)

where L is the set of links in the best path. The encoding of the failure model
now becomes:

ξk , Σe∈Efailede ≤ k ∧ λL (3)

We first acquire the best paths corresponding to all failure topologies by
leveraging Batfish [9]. After obtaining this mapping, we encode them to SMT
formulas. RBP works by recursively dropping a link in the best path, then treat-
ing the current network with one failed link as new network and compute the
new best path on it. We encode these recursive best paths as formulas. For ex-
ample, if the dropped link is e′ and the corresponding best path is L′, then they
should be encoded as failede′ → λL′ . Similarly, if another edge e′′ fails in L′ and
the new best path is L′′, the encoding should be failede′ → failede′′ → λL′′ . The
encoding could be interpreted as: if e′ is broken and e′′ is broken, the remained
broken links can only be in L′′. Let Ef be the set of failed links and L be the
corresponding best path of the topology with Ef dropped. The constraint for
restricting the failure model under Ef and L is:∧

e∈Ef

failede → λL (4)

This constraint states that if all links in Ef are down, then there is at least one
link should be dropped in its corresponding best path L.
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Fig. 2: Verification time of Minesweeper and Trailblazer for k=2, d=1.
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Fig. 3: Speedup for the two optimisations in isolation.

To efficiently encode the failure model, we applied cardinality constraints [2]
instead of the integer inequalities used by Minesweeper. Cardinality constraints
efficiently place a bound on the number of literals within a given set that can be
assigned True. So, given the constraints in Equation (1) and Equation (2) where
failede is replaced with a boolean binary variable, they are naturally meet the
semantics of AtMost and AtLeast constraints, respectively.

4 Evaluation

We conducted experiments on three networks selected from topology zoo[14]:
Bics, Columbus and USCarrier, and the network AS1755 from Rocketfuel [17].
Bics consists of 33 routers and 48 links; Columbus has 70 routers and 85 links;
USCarrier includes 158 routers and 189 links; AS1755 has 87 routers and 322
links. Each network from topology zoo has two types of network configuration,
OSPF and BGP. We collect test policies by using Config2Spec’s sampler [7],
which infers policies from a data plane. We inferred four kinds of policies: reach-
ability, waypoint, isolation and balance (see Section 3.1 for details). The policies
that never hold were filtered out using the trimmer of Config2Spec. We consid-
ered four failure models where k ∈ [1..4], representing there are at most 1, 2, 3
or 4 failed links respectively. We ran experiments on a machine with 64GB RAM
and 56 virtual cores with 2.00 GHz. We cross-checked the verification outputs
of Trailblazer and Minesweeper; their verification results were all consistent.

To compare Trailblazer with the vanilla Minesweeper and identify how the
proposed techniques contribute to its results, we compared three configurations
of Trailblazer: Comb0 with no optimization (original Minesweeper), Comb1
with recursive best path optimization, and Comb2 with recursive best path
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Fig. 4: Trailblazer’s performance depending on failed links and recursion depth.

optimization + cardinality constraints (Section 3.2). We run the three combina-
tions on BICS, Columbus and USCarrier under the failure model k=2 with the
recursion depth d=1. Comb0 and Comb2 in Figure 2 shows the verification time
of Minesweeper and Trailblazer. The time is averaged over all policies. The ’O’
and ’B’ inside brackets denote OSPF and BGP respectively. The average verifi-
cation time of Minesweeper for OSPF networks is ranged from 4.71s to 71.63s,
for BGP networks is 13.65s-185.53s. Trailblazer takes 0.53s-7.25s for OSPF net-
works and 3.64s-29.91s for BGP networks. Overall, Trailblazer is faster than
Minesweeper by the factor of 3.75–9.88X.

To evaluate the effectiveness of RBP and cardinality constraints in isola-
tion, we compared Comb0 with Comb1 and Comb1 with Comb2. The results
are shown in Figure 3, where B,C,U represents BICS, Columbus, USCarrier
respectively; O and B denote OSPF and BGP. RBP results in speedup from
3.78X to 6.31X. By using cardinality constraints, the verifier is accelerated by
0.92X-2.14X as shown in Figure 3(b).

To investigate how Trailblazer’s performance vary with number of failed
links and recursion depth, we conducted two sets of experiments. First, we set
the tested failure models as k=2,3,4 and recursion depth d=1. The results of
an experiment with Columbus and Bics are shown in Figure 4b. All sampled
Columbus’ policies are pre-pruned when k=4. The speedup ranges from 3.14X
to 15.92X. Verification is accelerated the most when k=3, while it is improved
the least when k=4. We speculate that when k is large, the policy tends not to
hold, and thus it is easier for the solver to find a solution, thus it will benefit less
from the pruned search space. Second, we set the failure model to k=3,4 and
recursion depths to d=0,1,2. We use USCarrier and AS1755 as the experimental
networks. The results shown in Figure 4a demonstrate that d=1 is the opti-
mal recursion depth in USCarrier networks, with the highest speedup reaching
26.94x, while AS1755 has the best performance at d=2. We speculate that the
performance will not keep increasing as d increases, since increasing the depth
also increases the overhead for computing the best paths.
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5 Related Work

Minesweeper [4] is an SMT-based network verifier, which reduces the verification
problem to an SMT problem. Trailblazer significantly improves the performance
of Minesweeper without sacrificing its generality. Batfish [9] is a control plane
simulator, which simulates control plane execution, generates a data plane and
analyses the data plane. In respect to fault-tolerance policies, Batfish enumerates
every failed topology, an approach that doesn’t scale in practice. Plankton [16]
models different routing protocols by simple path vector protocol [12]. It uses
an explicit model checker, Spin [13], to thoroughly explore the possible network
states to check whether there exists a state that violates the queried policy.
For fault-tolerance, it checks the policies by naive enumeration, which nega-
tively affects its performance. Plankton implementation is not publicly available.
ARC [10] models the network as a graph. It performs verification by standard
graph algorithms which are ensured to be polynomial. As a result scales for fault-
tolerance policies. However, it is incapable of representing some common network
features, including BGP local preferences and communities. Tiramisu [1] is an
improved version of ARC. It can support richer network features. However, it
trades the scope of its application for verification efficiency e.g. it does not ver-
ify properties such as the loop freedom and cannot compute counter-examples.
Netdice [18] is a probabilistic verifier which can prune the failed topologies when
verifying iBGP networks. Our technique performs similar pruning decisions via
an SMT encoding, and it is more general e.g., supports eBGP networks. Surg-
eries [15] and Bonsai [5] both exploits structural symmetry of network to acceler-
ate verification for network. They achieve good performance when networks are
highly symmetrical, but none of them can verify properties pertaining to when
network failures may occur. Origami [11] targets on fault-tolerance verification,
but it focuses on symmetrical networks and only reasons about reachability poli-
cies. MonoSAT [3] is an SMT solver that is efficient at solving problems involving
monotonic theories. The reachability policy is monotonic with respect to links
since removing a link can decrease the network’s reachability but cannot increase
it. The same applies to the isolation policy. However, other policies like waypoint
and balance are not monotonic, so MonoSAT is unable to verify them efficiently.

6 Conclusion

In this paper, we proposed an SMT encoding that significantly accelerates the
verification of network fault tolerance properties by pruning the space of topolo-
gies that are guaranteed not to change the verification result. We implemented
this new encoding in the open source tool Trailblazer, a variant of the state-
of-the-art verifier Minesweeper with the optimised encoding. Our evaluation
shows that Trailblazer significantly improves verification performance compared
to Minesweeper, with the highest speedups reaching 26.9X.
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