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ABSTRACT
Data leakage is a well-known problem in machine learning. Data
leakage occurs when information from outside the training dataset
is used to create a model. This phenomenon renders a model exces-
sively optimistic or even useless in the real world since the model
tends to leverage greatly on the unfairly acquired information. To
date, detection of data leakages occurs post-mortem using runtime
methods. In this paper, we develop a static data leakage analysis
to detect several instances of data leakages during development
time. Our analysis is constructed to be lightweight so that it can
be performed within interactive data science notebooks. We have
integrated our analysis into the NBLyzer static analyzer framework
and shown its utility on real world benchmarks. To the best of our
knowledge, we propose the first static detection of data science
data leakages.

CCS CONCEPTS
• Theory of computation → Program analysis; • Software
and its engineering → Integrated and visual development
environments.
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1 INTRODUCTION
Data science software is increasingly ubiquitous for everyday appli-
cations. Consequently, the correctness of data science software is
vital considering its impact on society. While a plethora of state-of-
the-art static analyzers exist that can target various programming
bugs, data science programs contain domain specific bugs that are
not supported by standard static analyzers. A notable data science
specific bug is a data leakage [8]. Data leakages arise when external
data (e.g., from the test data set) is used to train a model. Data
leakages can be particularly insidious. For example, normalized
input data may be split into training and testing data. However,
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the process of normalization transforms the data based on the en-
tire data set (e.g., taking the average) and thus any splitting of the
data cannot guarantee disjointness and may result in a seemingly
accurate model that does not perform well in practice.

Example 1.1 (Motivating Example). Consider the program below.
In the program, a CSV file is read into a data frame (line 8). From the
data frame columns are selected to represent x and y coordinates
(lines 14, 17). Each coordinate is normalized (lines 15) and split by
selecting ranges of rows from the data frame (lines 20, 21, 23, 24).
The training data is then used to train (line 30) the model and it is
then tested (line 33) to evaluate its accuracy (line 36).� �

1 import pandas as pd
2 import numpy as np
3 from sklearn.preprocessing import MinMaxScaler
4 from sklearn.metrics import accuracy_score
5 from sklearn.naive_bayes import GaussianNB
6
7 # load dataframe
8 df = np.genfromtxt("data.csv", delimiter=',', dtype=None)
9
10 # preprocessing tools
11 min_max_scaler = MinMaxScaler ()
12
13 # feature/tabel selection
14 X = df[['col1', 'col2']]
15 X_selected = min_max_scaler.fit_transform(X)
16
17 y = df['col3']
18
19 # train/test split
20 X_train = X_selected.iloc [:3]
21 y_train = y.iloc [:3]
22
23 X_test = X_selected.iloc [4:6]
24 y_test = y.iloc [4:6]
25
26 # initiate model
27 clf = GaussianNB ()
28
29 # train model
30 clf.fit(X_train , y_train)
31
32 # predict labels
33 pred = clf.predict(X_test)
34
35 # measure score
36 acc = accuracy_score(y_test , pred)
37 print("accuracy: {}".format(acc))� �

The code above highlights the ease of inducing a data leakage.
Even though the training and testing data is seemingly disjoint, the
fact that the normalization function is called before splitting means
that a data leakage is possible.

Typically, a data scientist will detect data leakage post-mortem [3].
Given a suspicious result, data analyses methods are used to iden-
tify data dependencies. These methods are powerful to explore the
relationships between data, however many data leakages can be de-
tected in the code statically and thus static analysis be can employed
as an early detection mechanism and complement postmortem data
analyses techniques.

In this paper we propose a static analysis for detecting such
data leakages. We present an abstract domain that tracks the origin
of data frame cells and determines if two data frames originate
from overlapping or tainted data sources. When a variable is an
argument to a function that trains or tests amodel, we assert that the
variable is disjoint and untainted. For instance, in the example above,
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our analysis would identify that there is a potential taint between
X_test and X_train since they both originate from previously
normalized data, despite being disjoint.

We have implemented our analysis in the NBLyzer [15] static
analysis framework for data science notebooks and evaluated its
performance using 2211 real-world competition data science note-
books. The evaluation shows that our analysis performs within the
time required by the use case for the vast majority of notebooks.

We summarize our contributions below:

• We define a novel static analysis which detects data leakages
in data science code

• We implement our analysis in the NBLyzer static analysis
framework for data science notebooks

• We evaluate our analysis on real-world data science code

The paper is structured as follows: In Section 2 we provide a
background. We then define our data leakage analysis in Section 3.
In Section 4 we describe how we integrate our analysis into the
NBLyzer static analysis framework. In Section 5 we evaluate our
analysis on a set of real world data science notebooks. In Section 6
we survey related work and conclude in Section 8.

2 BACKGROUND
2.1 Abstract State Computation.
Abstract Interpretation executes the program in a soundly over-
approximating semantics that ensure termination at the price of
false positives. Given a sequence of statements −→st , we construct a
control flow graph (CFG), a directed graph that encodes the control
flow of the statements. We define a CFG as ⟨L,E⟩ where an edge
(l , st , l ′) ∈ E reflects the semantics of statement st associated with
the CFG edge from locations l to l ′. The set of variables in all the
statements is denoted by V and the set of non-variable symbols
by S . We assume the variables in the statements are organized in
single static assignment (SSA) form [14].

A sound over-approximation σ ♯ of a state σ is computed by
iteratively solving the semantic fixed point equation σ ♯ = σ

♯
0 ⊔

J−→st K♯(σ ♯) using the abstract semantics J−→st K♯ for a sequence of
statements −→st and the initial abstract state (σ ♯

0 ).

2.2 Data Frames
A data frame is a table or a two-dimensional array-like structure in
which each column contains values of one variable and each row
contains one set of values from each column. Data frames have
non-empty column names, with unique row names/indexes. The
data stored in a data frame can be of numeric, factor or character
type. Each column should contain the same number of data items.
Thus semantically, a data frame has four components, namely, a
data frame variable or label y, a set of rows r̄ ⊆ R, a set of columns
labels c̄ ⊆ C and the contents of the data frame. Since we are not
concerned with the contents of a data frame in this work, we ignore
this component. We denote a data frame as yc̄r̄ .

3 DATA LEAKAGE ANALYSIS
In this section we present our data leakage analysis. We first define
a simple, representative data frame language similar to [12]. We

then use these statements to describe our abstract semantics. In
essence, our data leakage analysis keeps track of the source cells
of each range of data cells. In addition, it tracks if a set of cells is
tainted, i.e., it has been processed by an external library function
that could change the data in a way that can introduce a data leak.

3.1 Simplified Syntax
We define a simplified syntax for succinctly describing our analysis
abstract semantics for a data frame inspired language.We define five
classes of statements that are used to define the abstract semantics
for our analysis.

(1) source:

y = read(name)

where name ∈ S
(2) select/project:

y = x .sel[r̄ ][c̄]

where r̄ ⊆ R, c̄ ⊆ C
(3) operations:

y = op(x1,x2)

where op ∈ {union,merge, diff} and x1,x2 ∈ V
(4) functions:

y = f (x̄)

where f ∈ {norm, other} and x̄ ⊆ V
(5) sink:

f (x̄)

where f ∈ {test, train} and x̄ ⊆ V

The source statement reads from a source (indicated by a label
name) and stores a data frame into a variable y. For example, this
statement corresponds to pandas statements such as read_csv,
read_excel, read__fwf etc.

The select-project statement, creates a data frame in variable y
that holds a subset of data in x , based on a set of rows r̄ and columns
c̄ . It loosely corresponds to statements such as iloc, loc etc.
commonly found in libraries like pandas and to select and project
operations in relational algebra [12].

The operations class of statements transform data frames. Here
we assume binary operations. Depending on the function, these
have different semantics. The union statement performs a set union
of two data frames. This maps to pandas statements such as concat
etc. The merge statement combines two data frames by element.
This maps to pandas statements such as join etc. The diff performs
a set difference of two data frames. This maps to pandas statements
such as subtract etc.

The functions statement class models external library functions
that are not atomic operations. We distinguish between two types
of functions. The norm functions and other functions. By norm, we
mean a function that can invoke arbitrary dependencies between
cells e.g., normalization function etc. and this cannot guarantee
disjointness when split.

A sink statement represents a usage of data frames (as an argu-
ment) to either train or test a model.
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3.2 Abstract Domain
In this subsection we describe our abstract domain for tracking the
origin of data frames in variables. We note, our goal is to provide
a lightweight abstraction that allows us to assert if two variables
have an overlapping data source, or if they contain data that may
have been processed by an external function that may have intro-
duced a data leakage. We first describe the abstractions for columns
and rows of data frames and then proceed to describe our overall
abstract domain.

3.2.1 Abstract Data Frame.

Columns: We first describe an abstract domain to track columns
in a data frame. Note, since we do not assume a schema, we do not
know a priori which columns are in a given data source. We have
observed that since columns labels are almost always strings, it is
very rare to specify inclusion or removal as numerical indexes. For
this reason we propose an abstraction that is set based. Given a set
of column labels C , we also introduce a set of negative dual labels
in a set C̃ . For a positive element c ∈ C we denote the negative dual
element as c̃ ∈ C̃ . As is the case with negation ˜̃c = c , which also
holds for sets i.e., ˜̃C = C . In other words, the dual of the dual label
is the original label. We define a abstract domain ⟨Col ,⊑Col ⟩ for
tracking the columns in a data frames, namely,

Col = {C ′ | C ′ ∈ ℘(C ∪ C̃) ∧ ∀c1 ∈ C ′.¬∃c2 ∈ C ′.c2 = c̃1}

We sayC ′ ⊑Col C
′′ iffC ′′ ⊆ C ′ (note the inverse relationship), that

is an element with more information about included or excluded
columns is more precise than a column sets with less information.
The empty set is the least precise i.e., has no information on what
columns may exist and a set of all columns (represented as positive
or (exclusively) negatives) is the most precise. We also define an
operator RedCol that reduces a non-canonical set to a canonical
set by applying the rule c̄ ∪ {x , x̄} = c̄ . We define ⊔Col operator as
RedCol ◦ ∪ and ⊓Col operator as ∩.

Example 3.1 (Column Domain). Consider a file with the column
set C = {id,name, city, country, zip}. The abstract column set ele-
ments C1 = {id,name, ˜city} and C2 = {id, country, city}. Here C1
asserts that the columns are id and name columns. It does not have
a city column and it may have a country and zip column.C2 assets
that the columns are id and country and city. It may have all the
other columns. C1 ⊔Col C2 = {id,name, country}. Note that the
intermediate result is {id,name, city, ˜city, country} but is reduced
to not contain city. The join, C1 ⊓C2 = {id}.

Rows: We model the selection of rows with an interval domain
of natural numbers. Rows are not named, and a data frame can
have a large number of rows. Often ranges of rows are added or
removed. Therefore, we find the interval domain as adequate for
this task, we denote the interval domain as Int+ [7]. We define two
functions lw(r̄ ) which takes the lowest value of r̄ , and up(r̄ ) which
takes the highest value.

Data Frames: We now bring together the abstract domains for
columns and rows and define an abstract domain for data frames.
We define the abstract data frame as a triple:

⟨v, [l ,u], c̄⟩ ∈ L = (V ∪ S) × Int+ ×Col

For succinctness we use the notation v c̄
[l,u] for an abstract data

frame. We define join (⊔L) and meet (⊓L) operators as follows:

x c̄
[l1,u1]

⊔L x
c̄ ′
[l2,u2]

= x
c̄⊔Col c̄ ′

[l1,u1]⊔Int+ [l2,u2]

x c̄
[l1,u1]

⊓L x
c̄ ′
[l2,u2]

= x
c̄⊓Col c̄ ′

[l1,u1]⊓Int+ [l2,u2]

Note, joins and meets are performed on data frames from the
same sources. We also define an overlap predicate that asserts if a
two data frames from the same source overlap.

overlap(x c̄
[l1,u1]

,x c̄
′

[l2,u2]
) = [l1,u1] ⊓Int+ [l2,u2] , ⊥ ∧ (c̄ ⊓Col c̄

′ , ∅)

Moreover, we define a constraint function ↓c̄
[l,u] that constrains

data frames from an interval and abstract column set.

↓c̄
′

[l ′,u′]
(v c̄

[l,u]) = v
c̄⊓Col c̄ ′

[l,u]⊓Int+ [l ′,u′]

We also define a minus operator on data frames, namely ⊖:

x c̄
[l1,u1]

⊖L x
c̄ ′
[l2,u2]

=


x c̄−c̄

′

[l1,l2−1] iff l1 < l2 < u1 < u2

x c̄−c̄
′

[u2+1,u1]
iff l2 < l1 < u2 < u1

x c̄−c̄
′

⊥ iff l2 < l1 < u1 < u2
x c̄−c̄

′

[l1,l2−1],x
c̄−c̄ ′
[u2+1,u1]

iff l1 < l2 < u2 < u1


Example 3.2 (Abstract Data Frame). A data frame with known

columns {id, city} and rows {10, 12, 13, 14} from a source f ile1 can
be defined as f ile1{id,city }

[10,14] . The join and meet perform a compo-

nent wise join on the same source. The data frame f ile1{id }
[13,14] over-

laps but the data frame f ile1{country }
[13,14] does not.↓{id }

[12,15] (f ile1{id,city }
[10,14] )

results in f ile1{id }
[12,14]. Finally, f ile1{id,city }

[10,14] ⊖L f ile1{id }
[13,14] yields

f ile1{id }
[10,12].

Data Frame Sets: We lift the abstract data frame domain to sets
that is we define ⟨L̄,⊑L̄⟩ where L̄ = ℘(L) ordered by ⊑L̄ define as
follows ⊆ and where

⊔L̄ = Red⊔L
L̄

◦ ∪

⊓L̄ = Red⊓L
L̄

◦ ∩

We define a reduction operator Redop
L̄

as:

Red
op
L̄
=

{
{l1 op l2 | ∀l1, l2 ∈ L̄.overlap(l1, l2)} ∪
{l1 | ∀l1 ∈ L̄.¬∃l2 ∈ L̄.overlap(l1, l2)}

}
Essentially, after a join or meet is performed (op) the set of data

frames may overlap and thus the set needs to be put into a canonical
form.We also lift the ↓, and ⊖ functions to sets where the set version
perform the operations for each element in the set. Since ⊖ returns
a set, a flattening is performed.

Example 3.3 (Data Frame Sets). Consider two sets of data frames
L1 = { f ile1{id }

[1,10], f ile2{name }
[0,100] } and L2 = { f ile1{id }

[9,12], f ile3{zip }
[0,100]}.
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If we naively perform a join, we can get elements which can be
joined into a single data frame i.e.,

{ f ile1{id }
[1,10], f ile1{id }

[9,12], f ile2{name }
[0,100] , f ile3{zip }

[0,100]}

The reduction makes the set canonical i.e.,

{ f ile1{id }
[1,12], f ile2{name }

[0,100] , f ile3{zip }
[0,100]}

Note, if we do not perform this reduction, it potentially hinders
performance and complicates violation detection i.e., when a sink
statement is encountered.

3.2.2 Abstract State. We define the abstract state as a mapping
V → D between variables in V and an abstract domain where

D = ⟨L̄ × B × ℘({tr .ts}),⊑⟩

where we define ⊑=⊑L̄ × ⊑B × ⊆ and ⊔ = ⊔L̄ × ⊔B × ∪ and
⊓ = ⊓L̄ × ⊓B × ∩.

Intuitively, for variable we keep track of (1) the set of data frames
it is dependent on, (2) if those data frames are tainted i.e., have
data that cannot be safely decomposed and (3) if any data frames
have been used for training or testing. We differentiate between
which tuple element in the product domain is access by σ ♯1 (first
tuple element) and σ ♯2 (second tuple element) and σ ♯3 (third tuple
element).

Since data frames can have infinite ascending chains wrt. the
row interval abstraction and column abstraction, a simple widening
operator can be applied for rows [7] and similarly, for columns
the set can be set to ∅ (the top element) if the set of columns are
detected to be reducing inside a loop.

3.2.3 Knowledge Base. Wealso assume a knowledge basesKBsource ,
KBnorm and KBtest KBtrain which holds functions that act as a
source, introduce data leaks, and be used for testing and training,
respectively. Since several data science libraries exist, it is difficult
to infer this knowledge automatically.

3.3 Abstract Semantics
We define an abstract semantics for our data frame language. The
abstract semantics for each category of statements is described
below.

(1) source:

λσ ♯ .Jy = read(name)K =
{
σ ♯[y 7→ ({name ∅

[0,∞]
}, F , ∅)]

}
where read ∈ KBsource

(2) select/project:

λσ ♯ .Jy = x .sel[r̄ ][c̄]K ={
σ ♯[y 7→ (σ 1(x) ↓c̄

[lw (r̄ ),up(r̄ )],σ
2(x),σ 3(x))]

}
(3) operations:

λσ ♯ .Jy = op(x1,x2)K =

(a) op = union:{
σ ♯[y 7→ σ ♯(y) ⊔ (σ ♯(x1) ⊔ σ ♯(x2))]

}

(b) op = merge:

σ ♯[y 7→ σ ♯(y) ⊔ (

σ ♯1(x1) ⊓L̄ σ
♯1(x2),

σ ♯2(x1) ⊔B σ
♯2(x2),

σ ♯3(x1) ∪ σ ♯3(x2),
)]


(c) op = diff:

σ ♯[y 7→ σ ♯(y) ⊔ (

σ ♯1(x1) ⊖L̄ σ
♯1(x2),

σ ♯2(x1) ⊔B σ
♯2(x2),

σ ♯3(x1) ∪ σ ♯3(x2),
)]


(4) functions:

λσ ♯ .Jy = f (x̄)K =

(a) f ∈ KBtaint :{
∀x ∈ x̄ .σ ♯[y 7→ (σ ♯1(y) ⊔L̄ rename(σ ♯1(x),y),T ,σ ♯3(y) ∪ σ ♯3(x))]

}
(b) otherwise:{

σ ♯[y 7→ σ ♯(y) ⊔
⊔
x ∈x̄ σ

♯(x)]
}

(5) sink:

λσ ♯ .Jf (x̄)K =


∀x ∈ x̄ .σ ♯[x 7→ (σ ♯1(x),σ ♯2(x) ⊔ {tr })]
iff f ∈ KBtrain
∀x ∈ x̄ .σ ♯[x 7→ (σ ♯1(x),σ ♯2(x) ⊔ {ts})]
iff f ∈ KBtest


In the above abstract semantics the read statement produces a map-
ping between the data frame variable y and the filename. Because
we do not statically know any information about the file data, we
simply do not constrain columns (empty set) or rows (unbounded
interval).

For the union, merge and diff statement, we perform a corre-
sponding data frame operation on the two data frames x1 and x2,
namely, join, meet and minus and add it to the previous state of y.

For the norm function, we reset the mapping, by setting the
outgoing variable as the source mapping using the rename function
which simply renames all source variables in the first argument
to the variable in the second argument. We omit the definition
of rename as it is intuitive. We also set the flag to true (T ). If the
function is not a norm function, we simply propagate the state
information.

Finally in the case of a sink statement we mark each argument
with a {tr} element if it is an argument to a train function, and {ts}
if it is an argument to a test function.

Example 3.4 (Motivating Example (Cont.)). Consider our moti-
vating example again. In the program a CSV file is read into a data
frame (line 8). This creates a mapping of

d f 7→ ({data∅
[0,∞]

}, F , ∅)

From the data frame columns are selected to represent x and y
co-ordinates (lines 14, 17). This adds constraints so that

x 7→ ({data
{col1,col2}
[0,∞]

}, F , ∅)
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y 7→ ({data
{col3}
[0,∞]

}, F , ∅)

When each coordinate is normalized (lines 15) we flip the second
tuple in the domain to T and reset the source by setting the source
to the variable that holds the normalized data. When we split by
selecting ranges of rows from the data frame (lines 20, 21, 23, 24)
we perform a selection and get mappings

X_train 7→ ({x_selected {col1,col2}
[0,2] },T , ∅)

X_test 7→ ({x_selected {col1,col2}
[4,5] },T , ∅)

The training data is then used to train (line 30) the model and it is
then tested (line 33) to evaluate its accuracy (line 36). At the end
we obtain:

X_train 7→ ({x_selected {col1,col2}
[0,2] },T , {tr })

X_test 7→ ({x_selected {col1,col2}
[4,5] },T , {ts})

which violates the error conditions because they have the same
source, and despite being disjoint, both passed through a function
which tainted them. Consider if normalization was called after
splitting. X_train and X_test would have different sources and be
disjoint. We would then assert that no data leak occurred. Also
consider there is no tainted normalizing function and no splitting.
Without the flag, we would have to assert false positives (any two
variables with same source can’t be trained and tested).

3.4 Analysis Variations and Extensions
We have presented a version of our data leakage analysis. Several
variations of this analysis to accommodate additional or the absence
of information. The column abstract domain we present assumes
we do not have data frame schemas available. This results in a
more complex and less precise abstract domain. If a schema could
be known from a data frame source, the column domain could
potentially be simplified and improved. The same holds from the
number of rows in a source. If this is known a priori, it can improve
precision by enforcing finite intervals in the data frame abstrac-
tion. Operations such as map-based functions do not impact the
data leakage analysis. Transpose based operations while seemingly
causing difficulty can be handled largely with a simple flag that
re-routes our analysis to dual operations, i.e., use operations on
rows instead of columns etc.

4 INTEGRATION INTO NBLYZER
We have integrated our analysis into NBLyzer, a static analysis
framework for data science notebooks as described in [15]. The
analysis technique is depicted in Figure 1.

The analyzer ingests the statements as a CFG as defined in Sub-
section 2.1. The analysis operates by performing standard static
analysis intra cell. At the cell level this computation is defined as
Fci which we refer to a abstract cell transformer. Fci takes an ab-
stract state and computes a fix-point solution [13, 16] in the abstract
domain. At each execution, a cell transformer Fci for a cell ci is
applied with the current state, returning an updated new state i.e.,
Fci (σ

♯) = σ ♯′.
For inter cell analysis, the abstract state needs to be propagated

from one cell to another for a fixed depth of K or until a notebook
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Figure 1: Inter Cell Analysis

wide fixed point is reached (K = ∞). It relies on an inter cell depen-
dency graph which is defined by a predicate ϕ. Each analysis needs
to define ϕ along with its abstract semantics. Moreover, each cell
has preconditions prec j , typically the set of unbound variables. If ϕ
holds, the abstract state is propagated to the dependent cells, for
which the incoming abstract state is treated as a initial state. For
each cell the abstract state is checked for correctness criteria, if an
error is found a report is updated which serves as instruction for
notebook clients to alert the user to the consequences of the event
(e.g., by cell highlighting etc.).

To integrate into the NBLyzer framework we specify the addi-
tional ϕ condition for inter-cell propagation as follows:

ϕ(σ
♯
ci ,prec j ) =prec j ⊆ {v : (v 7→ x c̄

[l,u]) ∈ σ
♯
ci ∧ [l ,u] , ⊥}

∧ prec j , ∅

This rule stipulates the condition bywhich a successor cell should
be analyzed. That is, it states that if variables with rows (do not
map to ⊥ interval) in the abstract state of the current notebook cell,
are also unbound in the successor notebook cell (prec j ), then we
proceed to propagate the abstract state to that successor cell.

5 EXPERIMENTAL EVALUATION
5.1 Experimental Setup
All experiments were performed in an Intel(R) XeonW-2265 CPU@
3.50 GHz with 64 GB RAM running a 64 bit Windows 10 operating
system. Python 3.8.8 was used to execute NBLyzer. We evaluate
the execution-time of our static analyses running within NBLyzer
on the full set of Kaggle notebooks.

We use a benchmark suite consisting for 2211 executable real-
world notebooks from the Kaggle competition[1] that has previ-
ously been used to evaluate data science static analyzers [11]. The
benchmark characteristics are summarized in Table 1. We empha-
sise that this is a fair reflection of typical notebook code.

We see on average, the notebooks in the benchmark suite have
24 cells, where each cell on average has 9 lines of code. In addition,
on average branching instructions appear in 33% of cells. Each note-
book has on average 3 functions and 0.1 classes defined. We note
that these characteristics of low amount of branching, functions
and classes are typically advantageous for static analysis precision.
We found that every second notebook had a cell that could not be
parsed and analyzed due to syntax errors in it. Overall, this affected
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Figure 2: Data Leakage Analysis Avg. and Max. Analysis Times

Characteristic Mean SD Max Min
Cells (per-notebook) 23.58 20.21 182 1
Lines of code (per-cell) 9.12 13.55 257 1
Branching instructions (per-cell) 0.43 2.49 76 0
Functions (per-notebook) 3.33 7.11 72 0
Classes (per-notebook) 0.14 0.64 11 0
Non-parsing cells (per-notebook) 0.5 0.98 20 0
Variables (per-cell) 8.2 2.3 552 0
Unbound variables (per-cell) 2.1 1.06 12 0

Table 1: Kaggle Notebook Benchmark Characteristics

4% of cells in the benchmarks. 2.1 of variables were unbound, from
an average of 8.2 variables per cell.

5.2 Performance Evaluation
We evaluate the performance of the data leakage analysis. This
analysis is run on the NBLyzer setting K = ∞ (propagate till fixed
point). In Figure 2 the average and maximum data leakage anal-
ysis for executions are shown. The results how that the average
data leakage analysis on a notebook takes 41.45 milliseconds. The
average maximum analysis per notebook take 880.9 milliseconds,
with a global maximum of 233 seconds. Since this analysis is run
as a what-if analysis in a notebook, we require fast response times
(ideally < 1000ms) to retain the interactive notebook experience [2].
The analysis time for average case is well under the thresh-
old for users to notice any delay and does not degrade the user
experience. The average maximum recorded analysis time is
above the immediate fell threshold, but below the threshold
for the task feeling out of flow (1000ms). The global maximum
does cause considerable delay and user degradation. Moreover, only
4% of all analyses execute for more than 1000ms and only 1% for
more than 5000ms.

6 RELATEDWORK
Static Analysis for Data Science. Static analysis for data sci-

ence is an emerging area in the program analysis communities. A
comprehensive state of the art is outlined in [17]. In [15] is a static
analysis framework for data science notebooks. This framework
can support a wide class of analyses. We implement our technique
inside this framework. Our analysis can benefit from analyses such
as the one presented in [9] to detect infeasible merges, propagations
etc. due to incompatible shapes and dimensions. In [18] an anal-
ysis is performed that constrains the input sources (e.g., files) for
data science code. We believe we can also combine our technique
with such analyses to provide more information on our source data
frames.

Data Provenance forData Science. Data provenance [6] seeks
to record the lineage of data in the form of a graph [4], tree [19] etc.
Using this information, the user can manually perform an inspec-
tion to detect data leakages. We survey a subset of these techniques

that apply to data science programs. The technique in [11] statically
builds a DAG on python data science programs. This DAG can be
used to uncover a variety of issues including data leakage. Unlike
our technique, this uncovering needs to be performed manually.
Moreover, it does not support acyclic programs. Our technique
shares the idea of supplying a knowledge base to supplement the
static analysis with semantic information about the library. The
tool NBSafety [10] also performs a hybrid, dynamic and static anal-
ysis on data science notebook code. Its analysis is very specific to
stale cell analysis and cannot be directly employed for data leakage
detection.

Data Leakage Detection and Avoidance. Several techniques
exist to avoid and discover data leakages in data science code. For
example, a popular technique is the use of data science piplelines [5]
that stage the phases of sourcing, cleaning, splitting, normalization,
and training to avoid performing a normalization step before split-
ting. This, however, requires manual effort and code modifications,
and is not widely used among the millions of data scientists. For
this reason tools such as [3] exist. They perform dynamic instru-
mentation to detect a data leakage. Unlike our approach this is
for postmortem detection. One interesting direction is to use such
techniques to limit or dismiss false positives.

7 LIMITATIONS AND FUTUREWORK
In our current prototype we have not implemented all operations
but have reasonable coverage of pandas data frames. Our analysis
does not model several dynamic langauge constructs. However, we
believe in principle given an appropriate (lightweight) alias analysis
this can be achieved. We also note that data science code is simple
compared to mainstream programs, and rarely employs dynamic
features of e.g., Python. We plan to expand the cases handled by the
analysis and integrate lightweight aliasing to improve precision.

8 CONCLUSION
Wehave presented amethod for detecting data science data leakages
statically. Our technique is based on theory of abstract interpre-
tation and has been integrated into the NBLyzer static analyzer.
We believe this is the first technique to detect data science data
leakages statically.
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