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Abstract. Automated static analyzers are increasingly part of the code
review process. And just like with human code reviewers, a potential issue
reported by the analyzer may be important or unimportant (depending
on any number of things like context, environment, or abstraction). But
unlike with human reviewers, it is often difficult to obtain further clarity
on the reasoning behind the warning.

In this industrial case study, we present Rinser, a tool developed at
Amazon to ease user interaction with static analysis results presented in
code reviews. Our technique is an on-demand algorithm that produces
succinct evidence for possible error states. We have integrated Rinser
as a post-analysis pass for alarms given by the Infer static analyzer and
are able to produce traces on average 10x shorter than Infer traces in
under 6 seconds on average due the the removal of irrelevant information.
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1 Introduction

We consider the problem of producing efficiently-actionable evidence from a
static analyzer. That is, we seek to close the gap between static analyzers and
their human users by providing precisely the right evidence that enables users
to accept or dismiss potential issues reported by the analyzer.

Our efforts have been pivotal in gaining user trust when integrating static anal-
ysis into the code review process. The code review process is a traditionally
manual inspection of source code by developers other than the author. The code
review process is paramount to ensuring quality in software projects at Amazon
and beyond [36, 35, 18]. Code reviews provide another pair of eyes to check the
correctness, coherence, maintainability of the code, as well as being a medium
for team alignment, discussion, and learning. But on the down side, code reviews
require significant resources and may result in delays in development. Therefore,
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the use of static analyzers has been suggested as a mechanism to add automation
to the code review process [2, 18].

The strength of automated code reviews, backed by static analyzers, is in find-
ing cumbersome bugs that could be missed by human reviewers due to developer
fatigue [37]. However, typical static analyzers are limited in a key dimension.
They either provide no explanation to the origin of static analysis alarms or
their explanations are often too verbose and obscure for developers to use ef-
fectively. Similar conclusions have been observed in [24, 4]. Various studies have
conjectured what the ideal static explanation should be [5]. In this work we take
a pragmatic approach that has been shown to be successful in an industrial set-
ting. We argue that providing a succinct explanation of relevant code is key to
productive developer static analysis alarm tiraging. However, in this regard cur-
rent state-of-the-art static analyzers fall short. For example, Facebook’s Infer
provides trace information for each alarm—built alongside the analysis recording
its derivations. Our experience has been that these traces are too imprecise and
verbose for Amazon developers to effectively triage and action on the alarms. In
the case of our industrial use case, namely, the Prime Video application, the av-
erage Infer trace provided to developers was 44.5 statements long. However, we
found that, on average, only 10% of these statements were relevant to the user—
in the sense that they contributed to the state changes to realize the reported
bug.

It is important to note that verbose traces have repercussions beyond mere
inconvenience or productivity. In working with developers, we have found that
even in the case of a true bug (unknown to the developer), if the developer is not
provided with a quickly understandable explanation, they are likely to dismiss it
as static analyser noise. Thus any effort in increasing precision to reduce actual
noise from analysis abstraction can easily be zeroed out if the explanations are
not clear to the developer.

In this paper, we present Rinser, a tool developed at Amazon to improve the ev-
idence developers receive from static analyzers. Specifically, Rinser provides an
on-demand method to compute explanation traces comprised of relevant state-
ments, that is, statements that can affect the potential error under investigation
and avoids searching paths that are infeasible. The Rinser algorithm builds
explanation traces by performing a subsequent backwards, goal-directed static
analysis using a symbolic domain comprised of intuitionistic separation logic [32]
formulae and path constraints [10]. Specifically, this analysis computes a back-
wards over-approximation of the error condition, meaning it can soundly refute
potential error conditions. Unlike previous work employing similar domains [10],
Rinser leverages the backward analysis to explicitly construct concise explana-
tion traces for an error condition reported by a forwards static analysis.

As shown in Fig. 1, we have implemented Rinser as a backwards analysis tool
executed after a traditional forwards analysis, such as the Infer static analyzer.
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Fig. 1: Rinser Setup. Rinser is an on-demand analysis given an error-condition query.
To derive error queries, an initial static analysis is performed, for example, using a
forwards abstract interpretation on a code base. The results consisting of potential errors
along with auxiliary computed data (e.g., a call graph) is produced by the forwards
analysis, which is given to Rinser to construct an evidence trace for each reported
error. The explanation trace can be used by the developer to either produce a fix (or
ignore). In the case that Rinser fails to produce an evidence trace, it has instead derived
a sound refutation for the given error query (i.e., proven the potential error reported
by the forwards analysis to be a false positive).

When evaluating Rinser on several open source and an industrial code base,
our tool is able to surface possible bugs to developers with explanation traces
that on average provably remove 85% of statements compared to state-of-the-art
tools in under 6 seconds.

Foremost, our tool has eased the adoption of static analyzers at Amazon and
driven additional dialogue between engineers on the quality of the code. As a
bonus, it has also provided a means to soundly remove many trivial false-positive
warnings, thereby also reducing the subsequent manual triage effort.

Overall, our contributions are summarised below.

• Present the Rinser algorithm and tool design

• Demonstrate the utility of Rinser at an industrial scale by an experimental
evaluation on 7 popular open source projects and the Amazon Prime Video
application

• Report our experience using Rinser in the Amazon code review process

2 Motivation

In this section, we motivate the need for a more precise approach to static
analysis evidence construction and give an overview of our proposed approach.

When a list of alarms is presented to a developer by a static analyzer, it is de-
sirable that evidence is provided alongside the results to help the developer in
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their triaging effort. Commonly, evidence is provided in the form of an expla-
nation trace, i.e., a sequence of execution steps that lead to the reported bug.
This allows a developer to quickly decide whether to fix or dismiss the static
analysis alarm. However, in the current debugging mode of industrial strength
tools such as Infer, explanation traces contain excessive irrelevant execution
steps. In our evaluation on a broad set of benchmarks (Section 6) we have found
that on average 85% of statements in Infer traces are irrelevant i.e., do not
contribute to the issue.

As we discuss in Section 7, this can be detrimental to usability, productivity and
erode user trust.

137. char ∗ ∗rawHistory = malloc(sizeof(char∗) ∗ historyState→ length);
...
162. if(historyList[i]→ line && strlen(historyList[i]→ line) > itemOffset){
163. line = historyList[i]→ line + itemOffset;
164. else {
165. line = historyList[i]→ line;
166. }
167. rawHistory[rawOffset] = line;

Fig. 2: Null Dereference Example in Hstr[21]

For instance, Fig. 2 is a code fragment of Hstr [21], an open source benchmark
from Section 6. Infer reports that rawHistory may be null since malloc is
used at line 137, and it is then dereferenced by calling rawHistory[rawOffset].
It is clear that the conditional statement (from line 162 to line 165) is not related
to whether rawHistory is null or dereferenced. However, it is included in Infer
trace, as demonstrated in Fig. 3.

Given we demonstrate this on a small illustrative example, it may not be obvious
that irrelevant information impacts developer productivity. However consider
our real world industrial scale code base, namely, the Amazon Prime Video
application. Here the average explanation trace provided by Infer consists of
44.5 instructions and can be as large as 94 execution steps. When a large portion
of these instructions have no relation to the reported bug the trace can be deemed
as unintelligible and negatively impact on the actionability of static analysis
results.

To produce more succinct explanation traces, we use a backwards analysis, which
starts from the suspected bug location and attempts to construct an explanation
trace that can lead to the suspected bug. We convert the bug into a query, i.e.,
a logical formula that describes the state at the location the suspected bug
occurred. For our example, we convert the dereference to a logical assumption:
emp ∧ rawHistory = null before line 167, following the algorithm described in
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src/hstr history.c : 137 : 9 :
137. char ∗ ∗rawHistory = malloc(sizeof(char∗) ∗ historyState→ length);
...
src/hstr history.c : 162 : 16 : Taking true branch
162. if(historyList[i]→ line && strlen(historyList[i]→ line) > itemOffset){

↑
src/hstr history.c : 162 : 40 : Taking true branch
162. if(historyList[i]→ line && strlen(historyList[i]→ line) > itemOffset){

↑
src/hstr history.c : 167 : 13 :
167. rawHistory[rawOffset] = line;

Fig. 3: Infer Trace Segment of Null Dereference Alarm of Fig. 2

Section 6.1, this assertion flows backwards, to the conditional statement at line
162.

Since both branches of this statement do not modify our initial assumption, the
statement is considered irrelevant and not included in our explanation trace.
Hence, our explanation trace only contains information related to whether the
bug happens or not, filtering out all irrelevant information.

Another dimension where Rinser removes irrelevant execution steps, is in the
pruning of infeasible traces. Rinser prunes explanation traces that lead to a
contradictory state and thus avoids further unneeded and irrelevant explana-
tion tarce construction. For instance, Fig. 4 shows an example taken from the
benchmark OpenSSL [31] evaluated in Section 6.

1: static int test bio callback(void){
2: bio = BIO new(BIO s mem());
3: if (bio == NULL)
4: goto err;
5: ...
6: err :
7: BIO free(bio);
8: }
9: int BIO free(BIO ∗ a){

10: if (a == NULL) //The case a is null is handled
11: return 0;
12: if(CRYPTO DOWN REF(&a→ references,&ret, a→ lock) <= 0)
13: ...
14: }

Fig. 4: A Null Dereference Example in OpenSSL [31]

The debugging information shows that bio could be null and it is dereferenced
by calling bio free. However, the case input parameter a of bio free is null
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is handled in bio free by the conditional statement (line 10 and 11). Hence,
it is impossible that a could be null and dereferenced in bio free. Using our
approach, an assertion emp ∧ a = null is inserted at line 12 in which the alarm
reports that a is dereferenced by executing a→ references. Going backward,
it meets the condition a 6= null which makes the new assertion emp ∧ a =
null ∧ a 6= null. This assertion is proved to be unsatisfiable using the SMT
solver Z3 [28]. In this particular case, since no explanation trace exist and the
reported bug can be soundly proven as noise and dismissed.

3 Evidence Construction Algorithm

In this section, we describe our algorithm for computing concise explanation
traces as evidence for static analysis alarms.

We define a set of predicates, Pred. Each predicate is defined by a combination
of finite intuitionistic separation logic and path constraints formulae ordered by
implication (cf. Section 3.1 [10]). A predicate permits us to formulate a query
Q ∈ Pred that describes an error condition or a state that leads to an error
condition.

We assume an unstructured control-flow graph (CFG) as a programming model
to describe our algorithm. A CFG has a set of locations Loc and transitions
Trans. A transitions denoited trans := loc →cmd loc′ where each transition
has a source location loc ∈ Loc and destination location loc′ ∈ Loc and an
associated atomic command cmd ∈ Cmd. A location may also be be a entry
or exit location. An alarm is a query Q ∈ Pred and location. We define a
generic monotonic backward predicate transformer Pre such that Pre : Cmd×
Pred → Pred. Given a command cmd ∈ Cmd and initial predicate formula
Q ∈ Pred, Pre produces a new Q′ ∈ Pred, i.e., Pre(cmd,Q) = Q′. Since
we assume atomic commands in a CFG, the predicate transformer is exact.
For simplicity we don’t specify all the transformers for each possible statement
and leave the language unspecified. We refer the reader to [10] for standard
transformer semantics for an imperative language. However, we highlight since
we are operating on a CFG, structured statements (e.g., while loops) are not
defined in the backward transformer.

Definition 1 (Statement Relevance). An atomic command cmd ∈ Cmd is
relevant to a trace T iff for a query Q and a monotonic backward transformation
Pre(cmd, Q), Q6= Pre(cmd, Q)

Definition 2 (Succinct Trace Explanations). Assume CFG path cmd1 . . . cmdn,
a feasible trace explanation T is a sequence of commands that can be defined
inductively from the original query Q1. Thus,

cmd1 ∈ T iff Pre(cmd1,Q1) = Q2 s.t Q2 6= ⊥ (1)

cmdn ∈ T iff cmdn−1 ∈ T ∧ Pre(cmdn,Qn) = Qn+1 s.t. Qn+1 6= (2)
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In other words, Definition 2 states an backward execution of feasible explanation
trace does not lead to the state ⊥ and its intermediate states cannot equal ⊥.

Moreover, we say if a trace explanation only contains statements that are rele-
vant (Definition 1), i.e., each state in the trace execution changes, then the trace
is a succinct explanation trace. The set of succinct explanation traces is called
a succinct explanation trace set, or just trace set, defined by T .

3.1 Algorithm Description

3.1.1 Algorithm MkSuccinctTraces: We describe our approach via the
Algorithm MkSuccinctTraces. To ease the presentation we make some simpli-
fying assumptions to aid presentation. We assume only one entry location and
exit location per function, and one caller pre function and do not go to the level
of detail of describing work list fixpoint algorithms to deal with loops. We imple-
ment standard algorithms for fixpoint computations. Moreover, we omit several
optimizations which we describe at separately.

The input to Algorithm MkSuccinctTraces is a specific alarm, i.e, a query, lo-
cation pair, a CFG of a given function P obtained from a call graph call graph.
MkSuccinctTraces returns a set of succinct traces. We note in our implementa-
tion we can vary between finding all traces and finding a single trace. The the
latter case the essence of the approach does not change.

The inputs apart from our trace come from a prior forward static analysis (see
Fig. 1). Initially our trace set T is an empty set. We process the initial function
via a call to the ProcFunc algorithm which given a predate, location pair, a
procedure with a CFG, a call graph and a trace set, augments the trace set and
returns the state predicate at its entry location.

If the processed function P has any caller function P ′, the caller function is
processed with the exit location (call to GetExitLoc) and state produced by P
as input. The predicate state Q and trace set is updated.

When we reach the entry function and no more functions need to be processed
we terminate and return our trace set.

3.1.2 Algorithm ProcFunc: The Algorithm ProcFunc traverses all paths
starting from the initial query location to the entry location of a function. This
is done by calling for each command ProcCmd. Since we operate on a CFG,
we may encounter loops in the CFG. For readability, we omit details of our
worklist algorithms and the fixpoint computation, however we specify widen

as a widening operator to highlight the fact that when a loop is encountered
a widening operator is used to accelerate termination with the cost of over-
approximating the state and hence the trace set, i.e., as a consequence some
traces in our trace set may be false explanations.
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Moreover, if a path leads to an infeasible state, i.e., Q1 = ⊥, we ensure its trace
is not included in our trace set. Otherwise the trace (or trace set if there is
a call command) is added to the set of traces and the states are merged via
the disjunctive operator. Any equivalent states will result in the predicate being
simplified using standard laws of logic.

3.1.3 Algorithm ProcCmd: The ProcCmd algorithm distinguishes between
two cases:

(1) The case that a function is called, in which case we check if the function is
relevant to the query. If so, we call the ProcFunc procedure. To reduce the com-
putation effort, we only go into checking a called function F when its parameters
~n or the variable its returned value is assigned to, e.g. y, relate to the current
query. We check that in the procedure Related(Q, y, ~n). This procedure returns
true when y or one of the parameters ~n appears in the heap part of the query
Q. Intuitively, this means the function F may alter the query Q. Note because
of this case, a command may return a trace set. Because of this, the input trace
set and output trace set of the called procedure need to me merged where the
merge operator appends all traces in one trace set to all traces in the other trace
set. For example if trace sets T 1 = { [1, 2, 3], [4, 5, 6] } and T 2 = { [5, 7], [9,
11], [12] } then merge(T 1, T 2) = { [1, 2, 3, 5, 7], [1, 2, 3, 9, 11], [1, 2, 3, 12] [4,
5, 6, 5, 7], [4, 5, 6, 9, 11], [4, 5, 6, 12] }.

(2) The default case handles an atomic command. To update the value of a
query Q, we process statements in a backward manner, using Pre procedure. For
instance, in the assignment Q′ = Pre(Q, cmd) Q′ is the query before executing
the statement cmd and Q is the query after the execution. Hence, the tripe
{Q′} cmd {Q} is like a Hoare triple in program verification but since Pre is
defined on atomic commands i.e., no loops etc. the triple is exact. In this case,
a trace set with a single trace is returned.

3.2 Key Properties

Provable Relevance Checking: In all cases, Definition 1 is enforced by only
adding commands to a trace that change the predicate formula. To add an
execution point into our trace T , we compare values of the old query Q and the
new one Q′. If they are different, we add the execution to the current trace T to
make a new trace T ′. Moreover, if we prove a trace produces an infeasible state
i.e., equal to formula ⊥, it can be soundly pruned. This is done, by the use of
an SMT solver (e.g., Z3 [28]). If all traces lead to a ⊥ state we say the query is
refuted.

Over-Approximation: If a command cmd is in a loop we perform extrapolate
the inductive invariant by weakening the formula to insure we over-approximate
and ensure termination. Weakening a Pre means that it discharges an assump-
tion and conceptually assumes that the loop can satisfy that condition. If it
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doesn’t, then it’s a false explanation, but we only get sound refutations. A sim-
ple instance of this strategy is to removing the path conditions (setting them to
true). However, other mechanisms can be implemented [14]. Note: the need for
widening results in over-approximation thus in the presence of loops our trace
may indeed be spurious. We point the reader to Section 7 for a discussion in the
consequences of this decision.

Trace Sets as Succinct CFG: We have described evidence as a set of partial
succinct traces to the potential error location (with the initial error-condition
query). They are succinct in that they leave out or slice out the commands that
do not change the error-state query. They are partial in that the head of the
trace is a residual error-state query at the head location that if unsatisfiable
guarantees that the initial error-condition query at the potential error location
is unsatisfiable. Alternatively, we can see this set of partial succinct traces as a
sub-graph of the control-flow graph that slices out the irrelevant commands with
error-state queries at a (backward) frontier from the potential error location.

3.3 Optimisations

We describe several optimizations that can improve the performance of the al-
gorithm but are not detailed in Fig 5.

Forward memory information: From the forward analysis we can use over-
approximating points to information or function summaries in separation logic
to quickly determine if processing a function will lead to all infeasible traces.
In [10] this points to information is used to speed up refutations, and avoid
path explosions. In the case of analyzers such as Infer we can use the function
summaries provided.

Stop at true states: During trace exploration if a state Q = > or true, due
to the monotonic properties of Pre, we can correctly assume that all proceeding
commands will result in a true state. Thus we can stop the trace construction
at that point.

Intersection with forward trace: Given an over approximating forward trace
is computed the intersection of our over approximating backward trace can im-
prove precision and lead to less false positives. The resulting trace set will in this
case be a subset of both the forward and backward trace sets.

4 Integration into the Infer Static Analyzer

4.1 Implementation Details

We implement Rinser as a backward analysis checker on top of the Infer
explore mode4 in 2.5K lines of OCaml code. Rinser uses the explore mode to

4 https://fbinfer.com/static/man/infer-explore.1.html
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MkSuccinctTraces(alarm = (Q, loc), (P, cfg), call graph)

Input: An alarm: query Q, location loc pair in the CFG cfg, of a current
function P, in the call graph call graph

Output: Return a set of explanation traces T .

1: T , Q:= ProcFunc(alarm, (P, cfg), call graph, ∅)
2: while P has caller P ′ with cfg′ do
3: T ′, Q′:= ProcFunc((Q, GetExitLoc(P ′)), (P ′, cfg′), call graph, T )
4: Q:= Q′; T := T ′; P:= P ′

5: return T
ProcFunc((Q, loc), (P, cfg, call graph T ))

Input: predicate Q, location loc pair in the CFG cfg, of a current function P, in the
call graph call graph,
Output: Return a set of explanation traces T ′and predicate Q′.

1: T ′:= ∅
2: for (loc′ | loc→cmd loc′ ∈ cfg) do
3: T 1, Q1 := ProcCmd( loc→cmd loc′, (P, cfg), call graph, T )
4: if InLoop(loc′) then
5: Q1 := Widen(Q1, cmd)

6: if Q1 = ⊥ then
7: T 2 = ∅; Q2 = Q1

8: else
9: T 2, Q2 := ProcFunc((Q1, l’), (P, cfg), call graph, T 1)

10: T ′:= T ′∪ T 2; Q′:= Q′∨ Q2

11: return T , Q′

ProcCmd(Q, loc→cmd loc′, (P, cfg), call graph, T )

Input: predicate Q, location loc pair in the CFG cfg, of a current function P,
in the call graph call graph, a trace set T of accumulated traces
Output: Return a set of explanation traces T ′and predicate Q′.
1: switch cmd do
2: case y = F(~n): //Call function F with parameter ~n

3: if Related(Q, y, ~n) then
4: loc = GetExitLoc(F)
5: cfg′ = GetCfg(F)
6: (Q′, T 1) = ProcFunc((Q, loc) F , cfg′, call graph, {cmd})
7: T ′:= merge(T , T 1)
8: else (Q′, T ′) = (Q, T )

9: case Default:
10: Q′:= Pre(cmd, Q)
11: if Q′ 6= Q then T 6= ∅ ? T ′:= { cmd::t : t ∈ T } : T ′:= { cmd }
12: else T ′:= T
13: return Q′, T ′

Fig. 5: Trace Explanation Construction
10



access to information computed during the forwards analysis. Rinser operates
on the Smallfoot Intermediate Language (SIL) [7] which is one of the main
intermediate representations inside Infer. The current implementation uses a
syntactic call graph provided by Infer, however an external call-graph based on
a points-to analysis can be used in principle to provide increased precision. Due
to no explicit points-to analysis being available in Infer function summaries and
the existing Infer trace can be used to implement the optimizations outlined
in Section 6.1. In the implementation we may each SIL instruction to the C++
code location, so the trace contains pointers to the original code. We leverage
much of the Infer checker infrastructure to construct our abstract domain and
perform our backwards analysis including fixpoint computations.

4.2 Usage

When integrated into the code review process, Rinser can be run in batch
right after the static analysis run finishes or on-demand, when selected by the
user. Typically, a piece of code is flagged by a code review bot that executes
Infer under the hood. The bot allows the user to obtain additional information
by way of a witness trace. If Rinser has not been run before in batch mode,
the code review system will run Rinser using the command: Infer explore

--find-witness --select ID where ID is the alarm ID, otherwise it will obtain
cached trace information. The current service level agreement (SLA) states that
the tool has 30 seconds to obtain a trace. If no trace can be produced (but
some may exist), e.g., due to a timeout, the pre-computed Infer trace is used.
Rinser tarces are shown using the command: Infer explore --show-witness.
We currently use the Infer call-graph which is syntactic as well as the existing
trace to optimize the algorithm.

5 Related Work

Static Analyzer Explanations: Static analysis has been described in the
industrial code review process in [2, 13, 35, 18]. In this paper, we focus on
one element of integrating static analysis into the code review process, namely,
providing users with alarm explanations. Trace explanations or witness compu-
tations are described for industrial static analysers such as Astrée in [33] and
Soufflé [41, 38]. The explanation mechnism also used a backward goal orientated
analysis, however their domain is a abstract (approximate) trace domain. The
work in Soufflé focuses on Datalog-based static analyzers and users a proof an-
notations computed in the forward (bottom-up) evaluation to provide minimal
proof trees in a top down (backward) evaluation. Brauer and Simon propose [11]
a technique which performs a backwards analysis using abduction of propo-
sitional Boolean logic to generate legitimate traces. In [8], a forward fixpoint
algorithm is proposed along with a general theory showing how invariants, is-
sued as post-fixpoints of abstract interpretations, can be compressed to provide
witnesses of particular program properties. In [12], concise traces are learnt from
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model checking counter-examples and Beer et al. [6] uses the notion of causal-
ity to explain counter-examples. Lahiri et al. [25] present a technique in which
root causes of verification failures are found using MaxSat. In [19] a method
for providing better explanations to typing errors is described. Program Slic-
ing: Our technique has some similarities to slicing in that we search for feasible
program paths from an error location when we build our trace containing rel-
evant commands. Compared to traditional program slicing [40], our technique
is semantic and is closer to semantic slicing techniques e.g., [23, 9]. Our tech-
niques has seemingly orthogonal aims to slicing: we are primarily concerned with
building a succinct explanation trace, pruning infeasible paths is a bi-product
of our approach. On the other hand, our trace set computation can be seen
as a semantically sliced CFG that can be used to highlight relevant code or
generate traces as explanations as realized in Rinser. Backward Analysis:
Our approach is inspired by the Thresher algorithm [10]. We use a backwards
exploration that is over-approximating and refutably sound. Unlike Thresher,
however, Rinser explicitly builds a trace witness and adds another dimension
of pruning: it uses semantic information obtained from the backward analysis
to build traces that only contains relevant commands. At a more practical level,
Rinser targets C/C++ code and is implemented in the Infer static analysis
framework. Moreover, Our approach shares similar theoretical similarities with
other backward static analyses [30, 3, 1, 15].

6 Evaluation

In this section, we evaluate Rinser on popular open source libraries and an
industrially sourced code base from Amazon Prime Video. These code bases are
written in C/C++. The outcome of our evaluation is to validate the following
claims.

Claim-I: Reduction in Irrelevant Commands in Trace. Compared to In-
fer, we are able to produce more succinct explanation traces by removing
irrelevant trace information.

Claim-II: Succinct Explanation Construction within SLA. We claim that
for a very short SLA of 30 seconds, we are able to produce a significant re-
duction in explanation trace sizes.

Experimental Setup. Our experiments were conducted on an Intel R© CoreTM

i7-6700 (3.4GHz) CPU, 8GB RAM, running Ubuntu 16.04 LTS. We first use
Infer to analyze the code bases and get a list of alarms. Our experiments
focus on null dereferences but in principle we can support other memory related
properties.

6.1 Open Source Code Bases

We run Rinser on a number of popular open source code bases in Fig. 6 and
present results in Fig. 7. We report the size of each code base in the KLOC
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Benchmark KLOC
Hstr [21] 19
Htop [22] 20
Craft [16] 55
Tmux [39] 65

Hashcat [20] 141
OpenSSL [31] 300
NeoMutt [29] 484
Prime Video 283

Fig. 6: Benchmark Characteristics

Benchmark Tot #Pru #Tr #TO IR(%) Len(avg) ILen(avg) Ratio Exec(s)
Hstr [21] 27 2 25 0 56 3.44 7.8 2.3 0.33
Htop [22] 44 0 44 0 78 2.6 12.2 4.62 0.34
Craft [16] 53 2 51 0 79 4.8 23.2 4.9 2.18
Tmux [39] 34 6 28 0 83 2.9 16.7 5.8 17.92

Hashcat [20] 50 3 47 0 81 4.3 28 5.3 1.94
OpenSSL [31] 91 30 57 4 77 5.1 21.8 4.3 3.22
NeoMutt [29] 83 7 74 2 74 5.9 22.6 3.8 2.2
Prime Video 93 30 61 2 88 5.5 44.5 8.2 9.6

Fig. 7: Results of Running Rinser on C/C++ Benchmarks

column. The column Tot is the number of potential alarms produced by Infer.
#Pru shows the number of potential alarms that our tool could prune. #Tr
denotes the number of evidence traces produced. #TO expresses the number
of times our tool was not able to finish within the 30 second SLA. IR shows
the percentage of irrelevant statements in the original Infer trace, Len and
ILen are the number of commands on average in traces of our tool and Infer,
respectively. Consequently, Ratio shows the length reduction ratio. Exec(s)
computes the average execution time of pruning and/or computing traces when
it did not timeout.

Our results demonstrate the utility of our approach on 7 open source bench-
marks. Claim-I is supported by the fact that we were able to prove 85% of
commands on average from the Infer trace were irrelevant, this resulted in
their removal and our traces being on average 5.1x shorter, while performing
full refutations on 13% of issues. This is because our evidence construction algo-
rithm in Section only add a command into an evidence trace when it is verified
to be relevant with the current queries. Besides, there are only 6 issues timed
out in these open source benchmarks since our algorithm ProcCmd in Section
only processes related called functions. Hence, the running time of most issues
is well bellow the SLA time.

Claim-II is supported by the fact that we were able to produce explanation
traces for 85% of potential alarms produced by Infer. Hence, for 98% of bugs we
were able to either refute or produce improved explanations in less than 6 seconds
on average, well below the SLA of 30 seconds. The benchmarks show a trend
towards more timeouts with larger code sizes. At the same time, opportunities
for refutations appear to increase.
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6.2 Amazon Prime Video

We evaluate our tool on a Prime Video application implemented in C/C++. We
cannot provide a detailed design of the service, but we highlight the key features.
The service runs as part of the Prime Video application on the actual devices,
e.g., televisions, Roku devices, Amazon Fire TV devices, etc. and consists of 283
KLOC.

We report the evaluation results of the Amazon Prime Video code base in the
last row in Fig. 7. Claim-I is supported by the fact that the explanation traces
computed were on average 8.2x shorter than Infer’s. 32% of the time no traces
were produced due to a refutation, and 66% of the time a trace witness was
found. In the rare event that there is a time out (2% of the time) we fall back
on Infer’s traces. Claim-II is supported by the fact that when we do not time
out, a refutation or explanation is computed in less than 10 seconds on average,
again, well below the SLA of 30 seconds.

7 Experiences and Lessons Learnt

Rinser is used at Amazon to help clarify static analysis results to developers.
We were initially motivated by low action rates on static analysis results. As
similarly concluded in several studies, e.g., [36, 24, 4, 34], we found the main
reason for developer disengagement with static analyzers was poor result un-
derstandability, i.e., a lack of understanding of analyzer output, followed by a
tedious debugging effort and a subsequent loss of trust in the tools. Moreover,
our experience working with Amazon development teams to integrating static
analysis in their code review process has led to some surprising observations
which have further motivated the design of our tool.

Observation-I: Concise Evidence is At Least as Important as Preci-
sion. If the developer cannot quickly understand the reason for an alarm,
then almost always they take no further action. That is, determining whether
the alarm actually corresponds to a bug or not is postponed indefinitely—in
effect dismissing the alarm as “false” regardless of whether or not there is a
true bug lurking behind the alarm. Thus, even high precision analysis results
may be deemed ineffective, if the root cause of the alarm is obscure and not
quickly resolved by the developer.

Observation-II: Not All Code is Equal. During on-boarding meetings with
developers, we learnt that the time developers were willing to invest in alarms
depends on the code location. Developers ignore alarms in some files (e.g.,
test code, libraries) and prioritize investigations in others. This need to pri-
oritize precious triage time motivates Rinser’s on-demand-first design.

Observation-III: Not All Results are Equal. Minimizing false positives is
indeed important—“obvious false alarms” undoubtedly negatively impact
user trust. But at an industrial scale, it is not the only metric of importance
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for an analyzer. For example, industrial-scale analyzers need to meet service-
level agreements (SLAs) for developer wait time [26] to mitigate the pitfalls
of context switching [27]. We have found some false positives are “forgivable”
and in fact have some utility—provided that they can be efficiently under-
stood. We found that concise evidence for non-trivial alarms (that perhaps
turn out not to be actual bugs) facilitated discussion among developers and
has led to code improvements that, for example, avoid potential future bugs.
Similar observations are reported in [17] and can be compared to scenar-
ios in the traditional manual code review process where no concrete bug is
found but a code improvement is desirable nonetheless. In essence, if a false
positive is hard to refute algorithmically, it may also be hard for a developer
to manually understand the code. On the other hand, true positives may
have no action associated with them as the application context (e.g., how
it is used, other underlying assumptions about external libraries) are not
explicit in code and thus cannot be incorporated into the analysis. While
such cases are technically true positives, they are treated as false positives
and not auctioned upon in reality. Thus we recommend the metric of fix rate
as an indicator of the effectiveness of a tool. Rinser thus not only attempts
to improve triage productivity but also improved fix rates.

8 Future Work

User Counter Arguments: Rinser is the first increment in our overall goal
of narrowing the gap between developers and static analyzers. In our current
implementation, once a trace is received, a user can ultimately reject or accept
the trace. In future iterations of our tool we want to enable an interactive REPL
like environment where a developer could provide Rinser with a counter argu-
ment (e.g., where the tool has missed some context, or over approximated due
to widening). Rinser can then rewind its abstract execution, incorporate the
counter argument and produce a new witness.

Repair Suggestions as Explanations: A trace explanation is a set of com-
mands that evaluate to true and thus explain why the analyzer believes the error
to be real. Along side the trace, potential mutations in the code can be computed
which falsify the trace explanations and thus could provide additional utility to
the user by providing a suggested fix that soundly refutes an alarm.

Incorporating Other Abstract Domains: The current Rinser implementa-
tion only supports null dereference queries. We plan to extend Rinser to support
other memory related queries such as memory leaks. Moreover, in future work
we plan on extending our approach to other abstract domains such as numerical
domains.
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9 Conclusion

We have presented Rinser, a tool developed for computing explanations for
static analysis alarms. Rinser performs a backwards analysis to build concise
witness traces that have been pivotal for user acceptance of static analyzers at
Amazon. We have demonstrated the utility of Rinser on both popular open
source code bases and an industrially sourced Amazon code base, namely, the
Amazon Prime Video application. We show that our tool is able to meet the
industrial SLA of 30 seconds 98% of the time and to remove irrelevant statements
in traces thus reducing the size of the trace by 6.3x on open source benchmarks
and 10x on our industrial use case.
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