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ABSTRACT

In this paper, we present an access control verification approach for
Role-Based Access Control (RBAC) mechanisms. Given a specifica-
tion that models security boundaries (e.g., obtained from a threat
model, best practices etc.), we verify that a change to an RBAC
state adheres to the specification (i.e., remains within the security
boundaries). We demonstrate the practical utility of our approach
by instantiating it for Microsoft’s Azure AD. We have realized our
technique in a tool called AmBIT which leverages SMT (Satisfia-
bility Modulo Theory) solvers to efficiently encode and solve the
resulting verification problem. We demonstrate the scalability and
applicability of our approach with a set of generated benchmarks
that attempt to simulate real-world RBAC configurations.

CCS CONCEPTS

+ Security and privacy — Domain-specific security and pri-
vacy architectures; - Theory of computation — Program rea-
soning.
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1 INTRODUCTION

Access management for cloud resources is a critical function for any
organization that is using the cloud. Organizations are dynamic
hierarchical entities comprising of different users, roles, and re-
sources. Thus, managing how the vast volumes of sensitive data
are safely accessed is a well-established cloud security challenge.

To effectively manage access control at scale, system designers
have resorted to software defined permissions as opposed to using
static access matrix entries etc. Defining access control as code
allow users to define expressive rules using various domain specific
languages that define constraints on the interaction between users,
actions and resources.
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A common access management scheme is Role-Based Access
Control (RBAC). Here an access control management system stores
action permission constraints (roles) between users and resources.
Thus constraints determine what actions users can perform on
what resources.

While access control management aids in improving an orga-
nization’s security, the mere existence of access controls does not
automatically ensure all security rules are enforced. Rules embod-
ied in roles existing are typically time bound, however they do
not model invariant security specifications e.g, best practices, or
threat models, that transcend roles and encode fundamental secu-
rity boundaries of an organization. The dynamic nature of RBAC
e.g., adding/removing roles, attaching to groups, as well as the
intrinsic hierarchical nature of organizations and their resources,
makes it difficult to guarantee that these invariant specifications
will be adhered to. This has been highlighted by several notable
security breaches. For instance, a recent investigation by Cyber-
Ark [2] found that millions of Azure blobs were exposing sensitive
data including personal identifiable information, personal health
records, financial data, invoices, contracts among others. The study
highlights that misconfigurations by organizations are a real threat
and raises the question:

“Can we provide tooling to customers to help them avoid RBAC
misconfigurations?”

Example 1.1 (Motivation). Consider a simple interviewing sce-
nario presented in Figure 1. We depict two groups: a candidate in
Figure 1a and an employee in Figure 1b. A candidate is assigned
roles that allow for reading (full line) questions and writing (dotted
line) the answers to the questions. And an employee has roles that
allows for reading and writing questions and reading answers. Sup-
pose we create a group for internal candidates. Since an internal
candidate is an both employee and a candidate, the internal can-
didate inherits both employee and candidate roles. However, as a
general organization security measure, we never (regardless of the
user) want to allow someone to be able to write both questions and
answers as depicted in the threat model in Figure 1c. However, the
internal candidate group breaks this threat model. Thus, when we
add a role assignment for the employee or candidate groups we
implicitly violate the threat model via the internal candidate group
and put the RBAC system in an unsafe state.

While Example 1.1 depicts a simple scenario, even in this case
it is not unreasonable to expect a threat model violation to occur
due to the implicit inheritance of roles. This is further exacerbated
for larger organizations. Due to complex organization structures
e.g., user group hierarchies and dynamically changing structures
and permissions, manual inspection and detection is difficult and
often infeasible. Thus, there is considerable utility in automating
the validation process with formal guarantees.
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Figure 1: Violating RBAC State

In this paper, we propose a technique that uses automated rea-
soning to verify the state of a RBAC system given an event (e.g.,
adding a role assignment) and a specification. A slightly simplified
conceptual view of our approach can be summarised as a constraint
graph as shown in Figure 2. Here the y-axis denotes the set of
all principals and the x-axis the set of all scopes (resources). For
simplicity, we assume a single action (to avoid a third dimension).
Graphically, a specification defines invariant regions that allow
(blue-diagonal-lines) or do not allow (red-dotted) an action for the
set of principals and scopes. Similarly, the state of a RBAC system
can be mapped. Let the state be denoted by a green-checkered shape.
For a state to be safe, it must be disjoint from any disallowed region
and within an allowed region. In Figure 2a, we depict a scenario
when the state is safe i.e., does not cross any security boundaries.
In contrast, Figure 2b depicts a scenario when another assignment
is added to the scenario in Figure 2a and results in an unsafe state
i.e., a security violation.

Our technique works as follows: when the state of an RBAC
is due to be changed, we perform a what-if analysis to warn the
user if the change can put the access control configuration in a bad
state. To perform this analysis at scale, we first prune the search
space by determining the impact a given event has and generate
a static snapshot that comprises of a reduced RBAC state. This
static snapshot is then encoded into a logical formula. We leverage
automated theorem provers such as Microsoft’s Z3 [7] to efficiently
verify adherence to security specifications.

We have implemented our technique in a tool called AmBIT that
is specialized for Microsoft Azure AD. AMBIT aims to aid customers
in avoiding misconfigurations by allowing organizations to define
specifications which encode best practices, threat models etc. and
warning them of events that will not adhere to the specification.
As a result, customers are aware of breaking changes as soon as
possible and can avoid putting the RBAC state to an unsafe state.

We have evaluated AMBIT on 1000 automatically generated
benchmark scenarios where it exhibits a geometric mean runtime
of 1.29 seconds to perform a verification.

We summarize our contributions as follows:

(1) A verification method for RBAC systems that allows users to
specify security boundaries and verify RBAC state changes
do not cross these boundaries

(2) An implementation of our technique in the tool Ambit

(3) A preliminary evaluation to show the scalability of Ambit
on a set of 1000 generated synthetic benchmarks

We structure the remainder of the paper as follows: In Section 2
we provide a background of Azure AD RBAC. In Section 3 we give
a technical description of our approach. In Section 4 we provide a
preliminary evaluation of our technique. In Section 5 we contrast
our work with related works in the literature and we present some
future work in Section 6 and conclude in Section 7.



Ambit: Verification of Azure RBAC

Principals

scopes

(a) Safe state

CCSW 23, November 26, 2023, Copenhagen, Denmark

Principals

scopes

(b) Unsafe state

Figure 2: Security Boundaries and RBAC State: the y-axis denotes the set of all principals and the x-axis the set of all scopes.
The specification allow region is define in the blue-diagonal-lines area and disallow regions in red-dotted area, the RBAC state

is denoted by the green-checkered area.

2 BACKGROUND

In this section, we describe RBAC with an emphasis on Azure AD,
Microsoft Azure’s RBAC service. We note that this formalization
largely corresponds to standard definitions of RBAC, aside from
some nomenclature specific to Azure.

A note on the notation of this paper. With a slight abuse of
notation, we denote a set of elements of type x as {x}. This is just
a syntactic marker that {x} is a set of elements of type x where x
has been defined previously. Where there is ambiguity on if we are
discussing a set with a singleton element or a name of a set, we
clarify this. We also denote access of sub elements with a . operator,
so that if x has a subelement y we can access y from x using x.y.

Azure AD’s RBAC governs how users interact with resources
by assigning roles to users that assert what permissions a user has
on a resource. Thus RBAC maps a security principal which repre-
sents users, groups of users, applications etc. to Azure resources
(scope), for a set of role definitions that contains actions that can be
performed on the resources by the principal.

A principal p € P is a string identifier. Principals adhere to
an organizational hierarchy and thus are partially ordered. We
define an ordering Cp where p Cp p’ iff p is a p’. For example,
Ann Doe Cp full time employee.

A scope s € Sis astring path that specifies a scope. It has the form
mg/sub/rg/rsc where mg (management group), sub (subscription),
rg (resource group) and rsc (resource) are all strings. We define a
Cs ordering where if s Cg s’ then s’ is a prefix of s. For example,
test1/t/abc Cg test1/t].

We define a role r € R such that r = ({a}, {a}, s) where {a} is
a set of actions, {a} is a set of notActions and s is the assignable
scope. The set of actions allowed by a role is equal to {a} \ {a}.
Actions are of type wcString. We define an accessor notation on a

role such that r.a accesses actions and r.d accesses notActions. r.s
accesses the assignable scope of the role. Note, we don’t model the
semantics of each action and simply interpret them in the domain
of wild card strings (wcString).

AnRBAC state o € X is a set of role assignments. An RBAC event
e € E is a user initiated event such as adding a role assignment,
removing a role assignment (and by extension modifying a role
assignment). Given an existing RBAC state ¢ an event transitions
the RBAC system into a new state ¢’, we denote this transition
o —e 0.

A role assignment assigns a role to a principal at a scope thus
attaching the permissions in the role to the principal for the re-
sources in the scope. We note that role assignments are transitive
for groups which means that if a user is a member of a group and
that group is a member of another group that has a role assignment,
the user will have the permissions in the role assignment as well
i.e., roles flow downwards in the Cp hierarchy. For example, if a
principal p is a subgroup of principal p” then p inherits all the roles
ofp’.

We define a role assignment A € A as a triple (p,r,s) where
p € Pisaprincipal, r € Risarole and s € S is a scope . We say an
assignment is valid iff r.s Cg s.

In order to support a wide range of customer use cases, Azure
AD RBAC allows for broad expressivity and extensibility. In partic-
ular, it supports an additive role assignment model which allows
for a complex set of overlapping role assignments. This is further
enhanced by the implicit inheritance of roles for principals.

Example 2.1 (Azure AD Role Assignments). Below we show how
Azure AD Role assignments are described in JSON format. Here
we represent role assignments by defining a principal identifier, a
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role identifier and a scope. We omit auxiliary data irrelevant for A
our verification problem. coent Specializer L quories RBAC Service
Lo gqueries

{ 1 static snapsfwt

"principalld": "<InternalCandidateGroupID >", Frcoder U specification

" P " " . " Security Model

roleDefinitionId ": "<ReadWriteRoleID >",
"directoryScopeld": "orgl/.../ tests/questions
formal model

} SMT Solver

Similarly, we present an example role definition below. The role
definition is stored in Azure AD and attached to a principal and
scope. Again, we omit auxiliary data irrelevant for our verification
problem.

Figure 3: Overview of Ambit

3.2 Specification

The specification defines the potentially infinite regions on the

"id": "<ReadWriteRoleID >", . . . . .
dimensions of principals, actions or non-actions and scopes con-

permissions ": [ nected by connectives by combining atomic specifications with
{ logical connectives.

"actions ": [ We define a specification @ to be a set of sets of atomic specifica-
"Read", tions ¢, where we define atomic specifications as ¢ = {p, {({a}, {d}), s, n)

"Write " and where {a} and {a} are actions and notActions as found in static

1, snapshots. However, unlike static snapshots, p,s € wcString and

"notActions": [], an additional negation flag n is included to allow atomic speci-

o fications to be negated. Similar to roles we define accessors on

) all sub-components of an atomic specification e.g., sp € S, sp.p

] denotes the p € weString sub-component of specification sp.

Example 3.1 (Motivating (Cont.)). Given our role assignment and

} roles in the motivating example, we define a specification in JSON
for Figure 1c. Our specification says: any principal cannot write both

answers and questions. We first define atomic specifications PID1

3 TECHNICAL DESCRIPTION and PID2:

In this section, we provide a technical description of our technique {
that is realized in the tool AMBIT.

3.1 Overview "formulald": "PID1"

In Figure 3, we provide an overview of our technique. In the pro- principal™: "+",

ceeding subsections we expand on each component. AMBIT can act
both as a proxy to an RBAC system or operate internally to the "actions ": ["Write"],
RBAC system. Figure 3 describes the former approach, where role
assignment commands are issued to RBAC via AMBIT. If the role "scopes": "«/answers.txt",
assignment does not put the RBAC in a bad state, it is forwarded "negated ": true
and otherwise, an error warning is issued.

Once a role assignment event is given, the specializer component }
uses it along with the property and the existing RBAC state to
generate a static snapshot. To do this, the specializer component ] h
queries the RBAC system in such a way as to only obtain rele-
vant information with respect to the property and role assignment.
Next, the encoder component takes a static snapshot and translates
into a mathematical formula that is given to an SMT solver e.g.,
Z3. The SMT solver soundly solves the mathematical model and {
returns the satisfiability or unstatisfiability of the formula, that [
determines whether the assignment should proceed or the user {
should be warned. "formulald": "PID2"
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"principal ": "«",
"actions ": ["Write"],
"scopes": "x/questions.txt",
"negated": true

}

]

Next, we this define our final specification the JSON:
"specs": [["PID1"], ["PID2"]]

As we show in Section 3.4, this models our threat model in
Figure 1c i.e., that we don’t want a principal to have write access
to both answers and questions.

3.3 Specialization

The naive approach to performing an RBAC verification is to trans-
late the entire RBAC state along with the role assignment into a
verification problem. However, aside from being unscalable, this
would not be sound, as it would miss new assignments generated
from the inheritance model of RBAC systems. We therefore con-
struct a specializer that generates an expanded and yet pruned
RBAC state, excluding irrelevant role assignments and includes
newly generated ones from the effects of principal/group inheri-
tance.

The specializer first queries the RBAC system to create a set of
role assignments that accounts for principal hierarchies (Ep) and
scope hierarchies (Es). Assuming a role assignment (p, r, s) and an
RBAC state o, this process traverses all assignments in ¢ that have
a principal p” such that p Ep p’. From these assignments any that
do not have a scope s’ such that s C s’ are further discarded. All of
them are added to the snapshot, with their principals altered to be
equal to p.

Next, we collect any assignments that can be impacted by (p, r, s).
That is, we collect all assignments that have a p’ C p and s’ C s.
These assignments together with the inherited assignments form a
static snapshot.

A static snapshot IT is defined as a set of tuples {7} where 7 =
(p, {({a}, {a}),s) where p,s € string and a,a € p(wcString)

3.3.1 Role Assignment Specialization. We describe the core of our
specialization for the addition case in Algorithm 1. Instances for
removing a role assignment, changing a role assignment largely
follow the same logic with a few minor technical changes.

Initially, we initialize the set ra_set with the role assignment
that we are adding (line 1). Note, {ra} is a singleton set. In the first
loop in line 2 we do two things: in the first conditional statement
(line 3) we add the role assignments that the principal referred to
in ra inherits and that are relevant in terms of scope. Note that the
assignment is altered to refer to ra.p, the principal that inherits the
role.
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Algorithm 1: SpecializeRA(data, ra)

Data: Data queried from Azure AD: data;
The role assignment being added: ra
Result: A subset of the currently present Azure AD role
assignments set along with the role assignment
being added.
1 ra_set «— {ra};
2 foreach ass in data.role_assignments do

3 if ra.p Cp ass.p A ra.s Cg ass.s then

4 ra_set < ra_set U {(ra.p, ass.r, ass.s) };
5 L continue

6 if ass.p Cp ra.p A ass.s Eg ra.s then

7 ra_set < ra_set U {ass};

8 L continue

9 foreach p in data.subprincipalsOf (ra.p) do
10 L ra_set «— ra_set U {(p,ra.r,ra.s)};

11 return ra_set

In the second conditional statement (line 6) we add the role
assignments that the new assignment ra might affect, i.e., those that
inherit from its principal on a scope smaller than or equal to the one
in the assignment ra. In the second loop at line 9 we add to ra_set
the role assignments that are implicitly created with the addition of
ra by inheritance. Here it’s acknowledged that expanding privileges
of a group expands privileges of its members. Finally, at line 11
the result is resulting set of pruned role assignments are returned
to be passed to the encoder. Note, {(ra.p, ass.r, ass.s)}, {ass} and
{{p,ra.r,ra.s)} are all singleton sets.

3.3.2  Group Assignment Specialization. Additionally, we describe
specialization for the case of adding a principal to a group in Algo-
rithm 2. Instances for removing from a group, modifying a group
largely follow the same logic with a few minor technical changes.

Algorithm 2 iterates over all role assignments (line 2) to find
those that apply to group g. Concretely, if a role assignment ass
has a principal ass.p such that g Cp ass.p (line 3), we add the role
assignment to the inh_set. Then for each of the elements in inh_set
we perform an RA specialization using Algorithm 1 (line 7). Note,
{{p, ass.r, ass.s)} is a singleton set.

3.3.3 Changing roles. Adding actions to a role definition can be
treated as assigning a role that equals the set difference between
the new and the old definition to all principals that are currently
assigned to he said role. It can therefore be treated as an array
of addition cases. Removing actions from a role definition can be
treated following using the same logic.

Example 3.2 (RBAC Specialization). Consider the example in
Figure 4. Here we have a role assignment (FTE,r’,s’) and an ex-
isting RBAC state containing the role assignments (Emp, ry, s1),
(FTE, 2, s) and (Ann Doe, r3, s3). Note, the ordering of the RBAC
state elements. The specializer creates additional role assignments
for FTE, namely r; and rz because FTE Ep Emp and FTE Cp FTE
and s’ Cg s1 and s’ Cg sy. (Ann Doe, r3, s3) is impacted by the role
assignment, because s3 Cg s, thus we also include this in the static
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Algorithm 2: SpecializationP(data, p, g)

Data: Data queried from Azure AD: data;
The principal p being added to group g
Result: A subset of the currently present Azure AD role
assignments set along with the role assignments
being implicitly added by inheritance.
1 inh_set «— {};
foreach ass in data.role_assignments do
L if g Cp ass.p then

w N

4 L inh_set « inh_set U {(p, ass.r, ass.s)};

ra_set «— {};

w

foreach ra in inh_set do
L ra_set « ra_set U SpecializeRA (data, ra);

NN

8 return ra_set

(FTE, 7“/, S/> } Assignment

(FTE,r", ")
(Emp, 11, 51) (FTE,r, 1)
Ijl U — (FTE,r9,s2) Static Snapshot
(FTE TQ,SQ) State (Ann Doe,r3, s3)
i i (Ann Doe,r’, s")

(Ann Doe, 3, s3)

Figure 4: Reduction of State

[mo... 70 €T = \/ [m] 1)

0...n

[p. {a} {a}). )] = [p] A [{a} \ {a}] A [s] (2)
[ao...an € {a}] = \/ [ai] 3)

aje{a}
[pl=V, ©p (4)
[[=Vs & ©)
[a] = regex(a, V4) (6)

Figure 5: Static Snapshot Semantics

snapshot as this assignment can now potentially violate security
properties.

3.4 Logical Encoding

In this section we provide a translation of static snapshots and
security specification into a mathematical model. We define a set of
semantic functions [[e] to translate a static snapshot or specification
to a mathematical formula. With a slight abuse of notation, we over-
load [e] for various static snapshot and specification sub-structures.
In practice we formulae the resulting logic formula in SMT2 format
and solve it using the Z3 SMT solver.

In Figure 5 we describe the translation of a static snapshot. Rule
(1) simply says that a snapshot can be defined by a union of smaller
snapshots. Rule (2) defines a snapshot by converting a tuple to
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a conjunction of principals, actions and scopes. Rule (3) defines
actions as the union of all single actions. Rule (4) defines a free
variable for all principals (if there are several principals). Rule (5)
does the same for scopes. Rule (6) defines an action as a wild card
string.

In Figure 6, the atomic specification translation is defined in
similarity to the static snapshot, only that principals and scopes
can also be wild card strings, and a specification can be negated.
A specification is a DNF formula of atomic specifications, whose
JSON format is given in Example 3.1.

In Figure 7, we describe the verification problem semantics. We
quantify the whole expression over principals in order to add more
expressivity, allowing us to solve a wider range of problems, includ-
ing our motivating example.

Example 3.3 (Motivating Example (Cont.)). We show how our
motivating example scenario is translated to logic that is passed on
to an SMT solver. First, we define auxiliary symbols:

p = “(InternalCandidateGroupID)”

r = “Read”
w = “Write”
s1 = “orgl/tests/posl/answers.txt”

s2 = “orgl/tests/posl/questions.txt”

s3 = “* [answers.txt”

s4 = “ = [questions.txt”

Using the symbols above, we assume a static snapshot II:
= <p’ <{r! W}) {}>> Sl)

T2 = <P’ <{r’ W}, {}>’52>
T = {m, w2}

When translated, using semantics from Figure 5, we get the
following logical formula:

(Vp & p A (regex(r,Va) V regex(w,Va)) A Vs & s1)V
(Vp © p A (regex(r,Va) V regex(w,Vy)) A Vs & s2)
Next, we assume a specification ® = {{¢1}, {¢p2}} where:
@1 =(x, ({wh {}), s3, true)
o2 =+, ({wh {}), s4, true)

When translated, using semantics from Figure 6, we get the
following formulae:

[o1] = —(regex(x, Vp) A regex(w,Va) A regex(ss, Vs))
lo2] = ~(regex(x, V) A regex(w, Va) A regex(ss, Vs))

which simplifies to:
[o1] = ~(regex(w, Va) A regex(ss, Vs))
2] = —~(regex(w, Va) A regex(sa, Vs))
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[<p, {{a}, {a}),s,m] = [{p. ({a}. {@}.5)] & —n (7)
[<p, ({a}, {a}), )] = [p] A [{a} \ {@}] A [] ®)
[ao...an € {a}] = \/ [ai] 9

a;e{a}
[p] = regex(p, Vp) (10)
[s] = regex(s, Vs) (11)
la] = regex(a, Va) (12)

Figure 6: Atomic Specification Semantics

[#0. . ¢n € .11 = =3V,.~ \/ [$:.11] (13)
0..n
loo - gn € g1 = A\ 3o V5[] = [oi] (14)
0..n

Figure 7: Verification Formula Semantics

Table 1: Benchmark State Characteristics

Characteristic min mean max
actionCount 1 34.68 69
groupCount 5 53.142 99

membershipGraphDensity || 0.01001 | 0.0564 0.1
avgRoleSize 3.5 5.5975 7.5
roleCount 1 25.797 49
userCount 5 105.301 199

Example 3.4 (Motivating (Cont.)). Given we have definitions for
the atomic specifications and our snapshot, we construct a verifica-
tion formula according to Figure 7. This yields the following logical
formula:

We use this first-order logic formula (with the theory of regexes) to
pass to an SMT solver. Practically, we check

V-~ ((FVa, Vs [1T] = [n]) v (FVa, V5[] = [2]))

to report a violation if this formula is satisfiable, or declare the
state permissible otherwise. This allows us to provide the model
produced by the SMT solver to the user as a witness that provides
an example of how the specification can be violated (i.e. the model
is a counter-example).

4 EVALUATION

In this section, we present an evaluation of AMBIT. We investigate
how it performs on various verification problems with varying
characteristics.

4.1 Experimental Setup

We use an Mac M1 with 8 GB RAM, and .NET 6.0 Runtime (v6.0.20)
with Z3 version 4.8.16 - 64 bit running on a MacOS Monterey version
12.6.7. Ambit is written in approx. 1.5K LOC in the C# language.
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Table 2: Benchmark Specification Characteristics

Characteristic min | mean | max
specificationCount 2 15.119 29
negatedSpecificationCount 0 4.396 9

4.2 Benchmarks

Due to the difficulty of obtaining real world customer datal, we
simulate 1000 verification problems by generating various sized
RBAC states and specifications patterns. Namely, for each verifi-
cation problem, we (pseudo)randomly generate an Azure RBAC
state and a set of atomic specifications. Furthermore, we similarly
generate a role assignment to be added to that state. We perform
the event of adding a role assignment to trigger Ambit and measure
the time taken.

Table 1 shows the characteristics of the RBAC states generated.
The membershipGraphDensity parameter represents the probabil-
ity of an edge being created in the principal membership graph?.
avgRoleSize represents the average number of actions in roles
present in the system. Parameters of the form *Count represent the
number of * in the system (e.g. actionCount is the number of differ-
ent actions used in the system). Notably, user refers to a principal
that has no subprincipals, and group refers to one that does.

In Table 2, we summarise the number of atomic specifications in
a final specification in a verification problem. The number is split
between those that are negated and those that are not.

4.3 Performance Evaluation

In this section, we provide data on how performance of AMBIT
scales with the size of the system. To avoid information overload by
measuring for every characteristic (see Figure 9), we collapse the
benchmark characteristics to a single metric that we believe is a fair
reflection the syntactic difficulty of the verification problem. For
this, we introduce a metric named size. It is calculated according to
the following formula:

size =actionCount + userCount+
(2 + membershipGraphDensity) - groupCount+
18 - (specificationCount + negatedSpecificationCount)+

avgRoleSize - roleCount

The formula takes into account every significant part of an Azure
RBAC state. It acknowledges the complexity inherent to the fact
that principals can be grouped, while also taking into consideration
that specifications are particularly important to the verification
problem as they are not subject to specialization (thus the high
coefficient).

In Figure 8, we plot the size metric for verification formulae
against runtime (in logarithmic scale).

We observe the specialization phase is negligible in the overall
verification runtime. In all instances specialization completed in

1Customer security data, even via secondary meta data (element counts, avg. sizes,
structure etc.) is highly confidential.

2A DAG is a natural way to represent a partial ordering relation such as the principal
hierarchy in Azure. While actual Azure RBAC exhibits a somewhat different interface
to this information, without loss of generality we will refer to it as such a graph.
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Figure 8: Verification Size Metric vs Runtime

milliseconds, even for the largest benchmark problems. Conversely,
the SMT solving phase dominated the runtime.

We attempt to measure how the benchmark characteristics size
impact the SMT solving runtime. As shown in Figure 9, the per-
formance data does not correlate well with our single metric, with
outliers occurring both on smaller and larger benchmarks. How-
ever, we notice a slight tendency for the frequency of outliers to
increase with the size metric. It is however a well known problem
that the syntactic complexity of a SAT or SMT problem does not
necessarily correlate with runtimes [6, 12].

In any case, the vast majority of our benchmarks can be verified
that it adheres to or violates the specification within a few seconds.
More specifically, we exhibit runtime with a geometric mean of
1.29 seconds. For all 1000 benchmarks AMBIT returned the correct
results.

Overall, we believe that the results are promising for our use
case: that AMBIT can be used in an interactive manner be it as
an internal component in Azure AD or as an external tool that
interfaces Azure AD.

5 RELATED WORK

There is a large body of work on the verification of access control
policies. The majority of techniques attempt to verify that a pol-
icy cannot eventually arrive at an insecure state. For instance, the
technique in [20] uses event calculus, techniques such as [9, 16, 18]
reduce the RBAC verification to program analysis and use tech-
niques such as abstract interpretation or counter example guided
model checking to perform the verification. As described in [13]
the general problem of access control is undecidable yet decidable
for restricted cases. We indeed take a more pragmatic approach
and tackle a decidable fragment. Our formulae for describing the
RBAC state and security boundaries is non-recursive and allows
a decidable fragment of wild card strings. Thus, our problem can
be formulated in a logic whose decision procedure is in the NP-
complete class. With the advances of modern SMT solvers, that
have been shown to scale to industrial problem [3, 5] we can thus
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leverage these solvers to verify our problem: given an event, its
effect won’t cause the RBAC system to be unsafe. In the remained
of the related work we focus similar approaches.

In a similar spirit to AMBIT, ZELKOVA [4] translates access con-
trol configurations to a SMT formula. However, ZELkOVA limited
to Amazon IAM polices that are static descriptions [1] of a security
state snapshot and property. In contrast, RBAC systems have an
existing state that must be included in the verification problem. In
that sense the verification problem in [4] is different from our work
and thus, we require a specialization stage. Moreover, ZELKOVA does
not model principal (users and groups) and resource hierarchies
which are common place in RBAC systems. For Azure AD access
control this is fundamental and a dynamic RBAC system must be
modelled. Lastly, ZELkova only handles stateless logic specifica-
tions (the term stateless logic as in [17, 19] with respect to the
Craig Interpolation problem). We support a limited stateful logic
as required for specifications such as the one in our motivating
example. Such a property cannot be enforced by ZELKOVA.

The technique in [14] transforms XACML policies into Boolean
satisfiability problems and use a SAT solver to check partial or-
ders between policies using a bounded analysis. As the case with
ZELKOVA these policies are static and have non-dynamic seman-
tics. Moreover, the encoding to SMT is not sound due to it being
bounded. AMBIT on the other hand provides a sound encoding.

Similar can be said about MARGRAVE [10], which supports both
property driven analysis and change-impact analysis for XACML
policies. Like [4] and [14] it does not model principal and resource
hierarchies.

SECGURU tool [15] compares Microsoft Azure network connec-
tivity policies using the SMT theory of bit vectors. While supporting
Azure, AMBIT focuses on a somewhat orthogonal use case, namely,
role-based access control.

The approach described in [8], as [4], is limited to comparison
between policies in terms of permissiveness in order to facilitate
detecting misconfigurations. Notably, among others, it supports
Azure policies.

6 FUTURE WORK

Our current implementation of Ambit is preliminary and we plan
to integrate it with Azure AD RBAC in the near future so that we
can evaluate its utility and performance on real world customer
data

Specification expressivity. We have attempted to balance the ex-
pressivity and intuition of specifications so that users can limit
confusion with specification logic. To do this, we have tried to
make our atomic specifications correspond to areas in a graph e.g.,
Figure 2. On the other hand, we limit the ability to express all possi-
ble specifications that can be expressed in first order logic. While we
allow the specification to reference two different scopes, the same
cannot be done directly for two different principals. To do so we
would need to modify the semantics in Figure 7, to change the scope
of the existential quantifier that bounds the V}, variable. However,
we plan to continue exploring the merits of different expressivity
and also tooling to help users visualize both the specification and
verification findings.
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Figure 9: Single Dimension Performance Evaluation

Increasing scalability. We would like to investigate the perfor-
mance of Ambit on larger instances and investigate performance im-
provements. For example, performing incremental verification [21]
and partial evaluation [11].

Resolving existing misconfigurations. AMBIT can also be of utility
in a scenario where an erroneous configuration is already present in
the system. To detect an already unsafe RBAC instance (i.e. make it
comply with a specification) it needs to be iteratively reconstructed,
running AMBIT throughout the process. Whenever a violation is
detected, a model will be returned, hinting at what the violation is
caused by. This is a secondary use case for which no benchmarks
were run, however it is expected that this is a demanding task. Still,
this is likely a one-time cost, and the process can be done off-line.

Support for ABAC constraints. At the time of writing, Azure AD
is currently in the process of supporting additional expressivity
such as ABAC constraints among other features. We would like to
include these features when they become available to the public.

Other Use Cases. We believe our approach can be used for other
use cases. For example, an auxiliary use case for AMBIT is the ability
to keep the role assignments in an RBAC system non-redundant i.e.,
given a set of role assignments IT; and IIy, then IT; is redundant iff:
[[H]]] A [[Hz]] = ﬂnz]].

7 CONCLUSION

We have presented AMBIT, a verifier for Azure AD based access con-
trol. Given a specification that defines security boundaries, AMBIT
can mathematically verify if an event on an RBAC state will be safe
or unsafe. Through our evaluation of 1000 generated verification

problems, AMBIT was able to verify all the problems accurately in
a geometric mean time of 1.29 seconds.

While access control verification has been applied to various
access policy languages and services, to the best of our knowledge
we are the first to propose this form of verification, as well as a
verification tool for Azure RBAC.
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