Automatically Resolving Data Source Dependency
Hell in Large Scale Data Science Projects

Laurent Boué
Microsoft
Israel
laurent.boue @microsoft.com

Abstract—Dependency hell is a well-known pain point in the
development of large software projects and machine learning
(ML) code bases are not immune from it. In fact, ML applications
suffer from an additional form of dependency hell, namely,
data source dependency hell. This term refers to the central
role played by data and its unique quirks that often lead to
unexpected failures of ML models which cannot be explained by
code changes. In this paper, we present an automated data source
dependency mapping framework that allows MLOps engineers
to monitor the whole dependency map of their models in a
fast paced engineering environment and thus mitigate ahead
of time the consequences of any data source changes. Our
system is based on a unified and generic approach, employing
techniques from static analysis, from which data sources can be
identified on a wide range of source artifacts. Our framework
is currently deployed within Microsoft and used by Microsoft
MLOps engineers in production.

Index Terms—data dependency, data science, static analysis

I. INTRODUCTION

With the widespread adoption of machine learning (ML)
models, it is common for large data science organizations to
run hundreds of mission-critical workloads daily. Any failures
or delays negatively affect stakeholders who do not receive the
information they depend on to generate business value and de-
liver results to their customers. In this context, a new discipline
that aims to streamline and standardize all the engineering
pieces necessary to land production-level quality ML models
at scale has emerged under the name of MLOps. Although
similar in spirit and execution to DevOps, MLOps engineers
must also deal with a new set of challenges associated with
data-centric (instead of code-centric) projects [1], [2]. MLOps
includes incident management, data quality processes (model
/ data drift checks), data contracts, operationalization / support
of models and other responsibilities to automate the lifecycle
and continuous delivery of high-performing models in pro-
duction. All this must be accounted for, while ensuring scale,
latency, speed and optimal costs.

In particular, the topic of data source dependencies is
central to MLOps. As models evolve and grow in scope, the
overall MLOps architecture rapidly becomes overwhelmed by
a new form of dependency hell where, instead of software
packages’ versions, MLOps engineers now must try to re-
solve models’ data source dependencies. Generally, this task
is even more laborious because data dependencies tend to

Pratap Kunireddy
Microsoft
India
pkunireddy @microsoft.com

Pavle Suboti¢
Microsoft
Serbia
pavlesubotic @microsoft.com

span across organizational boundaries and originate from a
diversity of data stores. It is essential to note that while
code issues surface occasionally, data issues arise frequently
and rather unpredictably. Unfortunately, important data source
announcements (such as delays or issues of any kind) which
are often communicated via distribution list emails commonly
go unnoticed by model owners thereby resulting in model
failures and ultimately negative customer impact. Even when
data teams assign a specific role to manually track all such
announcements, the task of deciphering which models are
impacted remains daunting due to the inherently iterative
nature of data science models and to their complex dependency
graphs (with transitive and model-model structures).

In this paper, we present an automated dependency mapping
framework to extract data source dependencies from ML
model workloads. It allows subscribed systems to automat-
ically notify a model owner if, for example, a dependent
table schema has changed, contains corrupted data or any
other type of modification that is likely to affect the ML
model. Upon receipt of the notification, the model owner can
quickly take the necessary mitigating actions (e.g., re-train
model, ignore data, change data source etc.) so that model
consumers are not affected. To adequately perform automated
data source mapping, our technique employs static analysis
on a set of connected code artifacts (activities) referred to as
activity graphs. The advantage of our approach is that we can
compute data source dependencies quickly and with ease thus
avoiding run-time complications (e.g., security configurations,
storage costs etc.). Moreover, our framework is extensible in
that it supports a wide range of activity artifacts including
queries, scripts and notebooks without requiring modifications.
We have implemented our automated data source dependency
mapping framework and exposed it as a web API service.
Our implementation is deployed within Microsoft Cloud Data
Sciences (MCDS) where it is used to mitigate and prevent
data source related incidents ahead of time. We summarize
our contributions as follows:

« We present a novel dependency mapping framework that
extracts data sources from activity graphs using static
analysis.

e We present an implementation of our technique and
deployment in real-world industrial use cases.

Activity graph A1 __ Activity graph Ay

Database | Query output

tablel B Csv file
ADX activity
o filed |

Eijr \3 /
g

[l Query =
i

I

Database
table2

| Predictions |
| outputCsv |

:i

AML activity AML activity

\/ Trainl.py Train2.py

/’
file2 |

csv file
(in ADLS)

Other
dependnecy
iles

o We evaluate our framework and show its utility on real-
world benchmarks.

II. PROBLEM DEFINITION

The need to automate dependency mappings comes from the
typical volumes as well as time scales associated with data
sources. For instance, a modestly-sized data science organi-
zation deployed on our framework needs to manage approx.
300 activities, 25 databases, 250 tables and 2,500 columns.
Additionally, models are continuously updated and modified
by model owners so that data sources routinely appear or
disappear on an hourly basis. On top of this, models and data
sources often display complex transitive dependencies with
one another. In this context, it is infeasible to manually track
data source dependencies. Automatic monitoring also allows
data science organizations to reduce their rates of missed
Service Level Agreements (SLAs) with their stakeholders by
providing a faster path to identify root cause reasons for model
failures and resolve incidents before they are even noticed by
downstream stakeholders.

A typical ML workload is constructed as one or several
activity graphs. An activity graph is a set of Azure Data
Factory (ADF) activities such as Azure Data Explorer (ADX)
or Azure Machine Learning (AML). Activities digest data
and produce output data. Hence, activities are connected
via intermediate data. We classify data into two categories,
namely, initial data sources (i.e., raw data from a database or
file etc.) and derived data source (i.e., output from another
activity).

Activities perform a well-defined unit of work such as
control flow operations, data mapping operations and many
others using programming logic i.e., scripts, database queries
etc. Normally, ADX activities are responsible for data querying
and AML activities for training / inference of ML models.
We define a data source as a tuple (s,c) where s is a source
symbol i.e., representing a database table name or filename,
¢ is the set of columns. We use the notation s®. Typically,
an activity graph is defined per model and its output is the
output of a model e.g., inference. Output from a model i.e.,
an activity graph, can be an input into another activity graph.

Problem 2.1 (Model-Input Dependency Mapping): Given a
set of initial data sources and a set of models in activity graphs,
determine which initial data sources impact which models.

Example 2.1 (Motivating Example): In Figure 1 we describe
a small configuration with two activity graphs A; and A (en-
closed by the dotted lines). In the first graph, we have two ac-

- tivities, namely, an ADX database query and an AML Python
| script. The database query is performed on two database tables
and on some set of columns (which we don’t define for
readability). Thus tablel and table2 are initial data sources
| whereas filel is a data source derived from the ADX activity.
Both file] (derived data source) along with another file2 (initial

data source) serve as inputs to the AML activity consisting of a
machine learning script Trainl.py which stores its predictions
in an output file. To slightly add to the complexity, the derived
data source output which is produced by 4; is used as input to
train another model Train2.py in another AML activity which
belongs to the second activity graph As.

III. DEPENDENCY MAPPING FRAMEWORK

In this section we describe our dependency mapping al-
gorithm. Our algorithm operates on three levels: (1) set of
connected activity graphs (2) a single activity graph (3) a
single activity.

Algorithm 1: Activity Graph Analysis

Input: Activity graph A
Result: Set of data sources ¢
1 ¢ =0
2 nodes := FIFO();
3 nodes.push(A.start);
4 while nodes is not empty do

5 a := nodes.pop();

6 I := Analyze(a);

7 if fixpoint reached then

8 | return (;

9 end

10 for i € I A A.derived(i) do
u | nodes.push(A.deps(i));
12 end

13 ¢:=C¢U{i el source(i)};
14 end

15 return (;

Algorithm 1 describes our approach for computing a set
of data source dependencies ¢ for a single activity graph A.
For each A we assume a start activity start, a function deps
that given a data source provides a set of activities in .4 that
produced it as output and a predicate derived which asserts
if a data source is derived. In line 1, we initialize the data
source set ¢ to the empty set. We then create a FIFO (nodes)
and add the starting activity to it. The general idea is that we
propagate backwards (line 11) to other connected activities
until we encounter only initial data sources or stop gaining
information (reach a fixpoint). Each time we encounter an
activity, we analyze the activity statically using the Analyze
function (line 6). We then proceed to follow dependencies (via
deps) from derived data (line 10) and update { when initial
data sources (line 13) are found. The algorithm terminates
when either no more nodes are in the FIFO (line 15) or we
detect a fixpoint (due to the assumed monotonicity of Analyze)
in line 8.

3 datal
4+ data2 =

pd.read_csv("filel.csv")
pd.read_csv("file2.csv")
5 X = datal[["loc", "age"]]
6y = data2[["target"]]

X_train, X_test, y_train, y_test =
8 train_test_split (X, vy, ...)

9 lr = LogisticRegression{()
0 a = lr.fit(X_train, y_train)
11 y_pred = lr.predict (X_test)

2 y_pred.to_csv ("output.csv")

Fig. 2: Trainl.py Script

Example 3.1 (Motivating Example Cont.): Consider our
motivating example in Figure 1. Suppose we analyze the
first activity graph. We first process Trainl.py and have
¢ ={file29¢} and mark filel as a derived data source. We
then add the query activity to our nodes and find as a result
that we have ¢ = {file2%9¢ table1'°®, table2™*™*} assuming
the query selects columns loc and name.

For the case of several activity graphs we apply Algorithm 1
to individual activig graphs and repeatedly make the following

oeclUyg oc CE

inference: (g = ((p —0)U (4 until a fixpoint is reached.
Here, O 4 is the set of all outputs of the a model in an activity
graph A, and (p is a mapping in an activity graph B. This
rule states: if there is a common element between an output of
activity graph A and a data source mapping of activity graph
B then there is a transitive mapping to activity graph B for all
data sources that are mapped to activity graph A, excluding
the common element.

Example 3.2 (Motivating Example Cont.): Consider
our motivating example in Figure 1. We first build
the graph for the model in Train2.py. Here (4,
{output, file2m*™e¢ ... }. Since O4, = {output—} and
Ca, = {file299¢ tablel'*c table2"*™} we can then con-
clude that 4, = {file29¢ tablel!®® table2mo™e .. . }.

IV. DEPENDENCIES FROM SOURCE CODE

In this section we describe our static analysis techniques to
implement the Analyze function in line 6 of Algorithm 1.

A. Source Mapping Analysis for Scripts

a) Static Analysis: To statically analyze scripts we per-
form an abstract interpretation. The framework of abstract
interpretation [3], [4], computes an over-approximation ot of
a state o by iteratively solving the fixpoint equation of =
ag U [p]*(c*) using a monotonic interpretation of the abstract
semantics [p]* for a program p, that produces an updated
abstract state that is joined (LJ) with the initial abstract state
ag. We refer the reader to [5], [6] for an in-depth explanation
of abstract interpretation and data flow analysis.

Practically, the above is achieved by converting source
code into an abstract syntax tree (AST) representation and
subsequently into a control-flow graph (CFG), which is then
analyzed. Given a sequence of statements, the CFG is a

directed graph that encodes the control flow of the nodes
that represent straight-line statements (no branching etc.). We
define a CFG as (L, F) where an edge (I, st,l") € E reflects
the semantics of statement st associated with the CFG edge
from locations [to {’. The set of variables in all the statements
is denoted by V' and the set of symbols by S. The analysis
proceeds to compute a (least) fixpoint solution by processing
each statement starting with the entry statement and following
the CFG control-flow using a worklist algorithm [6].

To instantiate an abstract interpretation for our dependency
mapping problem, we need to define two elements (1) how
we represent that abstract computational state and (2) how to
define the abstract semantics i.e., rules for how we process
each type of statement.

b) Abstract state: We define an abstract state as a
mapping between variables and set of data sources e.g.,
of = v {...,s%...} where v € V, s € S is a data
source symbol with selected set of columns ¢. We define a
Ll operator on states as a piece wise set union. We denote
substitution of a variable x with value d C S in an abstract
state 0¥ as of[x > d]. Apart from the abstract state, we also
introduce a mapping set I which contains the data sources that
reach a model function.

c) Abstract semantics: To define our abstract semantics
we introduce an abstract transformer, namely, a function [st]
parameterized by a statement type st that takes as arguments
(denoted as \ arguments) an abstract state o and mapping
set I. The abstract transformer specifies how we analyze each
type of statement and returns an updated abstract state and
mapping set. Moreover, our abstract semantics requires us to
detect input and model operation statements. We thus mark
the set of input statements (e.g., read_csv) in a set Source and
the set of model training statements (e.g., fit) in a set Sink.
The result of an analysis is a mapping set I which is a set
of data sources. Note, by the definition of our problem, we
assume only one model per activity graph.

Below, we outline the key set of rules that govern how input
sources are propagated for a given statement.

1) input:

Mot I.[y = read(input)] = (o? Uy — {input®}), I

where read € Source,C set of all columns of input
2) project:

Aot I.[y = z.selld]] = oty — o (x)], 1
where o () constrains columns of all source
mapped to x to columns ¢ where applicable

3) external functions:

Mt Ly = f@)] = oy = oF(y) U || ot]

TET

4) sink:
Aot I[m.f(z)] = o, Vo € Z, 1 Uc*(z)
where f € Sink

Case (1) handles read statements. Here we simply map
the left-hand-side variable to the source being read with all
columns. Case (2) handles projection. Here we map the left-
hand-side variable to the source with appropriate constraints on
columns. Case (3) handles external functions. Here we simply
join all sources from the arguments (Z) of the function to the
left-hand-side variable. Case (4) handles a call to a model
function. Here we add the sources of the arguments to [for
all inputs arguments to the function.

Example 4.1 (Static Analysis Example): For Trainl.py in
Figure 2, we proceed to process rule (1) for both read
statements, finishing with the abstract state: {datal —
filel...,loc,age,.“,fl'le2 — Output...,twrget,...}.

The projection invokes rule (2) constraint so that we
have variables X and y map to: {X + filello>@9¢ y s
Outputtarget}

Finally, at line 8, we apply rule (3) and when we de-
tect the fit function in line 10 we apply rule (4) and add
the data sources of X_train and y_train to I, ie., I =
{filelloc,age’ Outputtarget}'

B. Source Mapping Analysis for Other Artifacts

Aside from scripts, other activities we support include
database queries, multi-file scripts and notebooks. For ex-
ample, queries can be converted to imperative Intermediate
Representations (IRs) (cf. Chapter 3 in [7]) and subsequent
CFGs analyzed like scripts in Section IV-A. Multi-file and
function scripts can be resolved via cloning [8]. Notebooks
can be handled by the technique in [9].

V. DEPLOYMENT AND APPLICATIONS

In this section we describe the implementation of our
mapping framework and its deployment. We also discuss
several use cases.

The high-level overview of the architecture of the mapping
framework API is presented in Figure 3. We have deployed
the dependency map as a REST web API service. The request
payload of the API consists of: (1) the path to an Azure
DevOps Git repository hosting the target source code we
wish to analyze and extract data dependencies from (2) An
optional field to filter the response. The response consists of
the dependencies of the models in the Git repository, filtered
as per the optional field in the request. The overall pipeline is
orchestrated within Azure Data Factory and can be scheduled
to run either at a pre-defined schedule or at event based.
The code itself is containerized and the image contains the
.NET runtime. First, the target source code is pulled from
Azure DevOps Git repository and processed by our mapping
framework. Finally, a copy of the data source dependency
mappings is stored as a file in Azure Data Lake Storage
(ADLS). The service controllers are hosted separately on a
Kubernetes cluster provided through Azure Machine Learning
Inference Endpoints and the service pods cache the output file
and serve the real-time requests. Below we describe three use
cases that use our service.

gz
651
g3

Feature Pipeline code

e,

sauadid @2/

i Schedule
’.
Dependency

Mapping Logic on
Azure Machine Read

Payload
Response:

O

Real Time Client

DD |

DBD
DD

Kubernetes
Services

Key Vaults

Learning Pipeline

O

—s
Batch Client

€ GET-
File >

Fig. 3: High-level sketch of the software architecture imple-
mented to expose dependency map as a RESP web APL

a) Use Case I: Interactive MLOps dashboards: Our first
use case is an interactive PowerBI dashboard which hooks
into the API for real-time updates. The main purpose of the
dashboard is to assist our MLOps engineers in maintaining
good overall health of our production ML models. For ex-
ample, when MLOps engineers receive communication about
data source changes, they rely on the dashboard to identify
which activities may be impacted. This way, we ensure that
comprehensive and responsive actions are taken to react to
data source changes. In particular, the dashboard is useful in
identifying non-trivial dependencies such as model-to-model
dependencies. Finally, the dashboard helps MLOps engineers
decide if a model needs re-training in case some of its most
important features are affected by a data source change.

b) Use Case II: Knowledge graphs: Traditional entity
relationship diagrams quickly become outdated with ever
changing data sources, model owners and downstream busi-
ness stakeholders. Recently, knowledge graphs have gained
momentum as a way to collect information about complex
datasets, their relationships to one another, connect business
terms to data elements and more. Additionally, knowledge
graphs are a convenient tool to surface insights that improve
data discovery and governance. We have implemented our own
version of a knowledge graph that leverages the dependency
map API to cross-link between activities and their extended
information. Integrating this network of information with our
Incident Management System (IcM) removes some of the man-
ual load from MLOps engineers by sending automatic alerts
to the relevant parties affected by a data source change. Addi-
tionally, the dependency map API populates meta-information
knowledge about the data sources to improve discoverability
(such as column data types in tables, business stakeholders
etc.).

c) Use Case III: Feature stores: Feature stores are a data
management layer whose purpose is to act as a single source
of truth of ML datasets. Persisting features in a principled
way is expected to accelerate model training and scoring so

TABLE I: Dependency Map Evaluation

[Model ID | Avg. Act Size | No. Act [No.Dep [[[([[T (ms) |
M1 1928.9 63 127 1591 742
M2 199 1 37 1209 | 336
M3 4575.2 38 37 1145 | 986
M4 2526.8 18 47 978 302
M5 2500.7 12 31 446 126
M6 1520.3 13 60 434 233
M7 2808.8 8 20 282 82
M8 713.2 6 59 206 72
M9 640.1 7 55 199 80
M10 1428 5 26 170 122
Ml11 2171.3 6 35 135 164
Mi12 3571 11 44 131 162
M13 92.2 18 34 100 15
Ml14 1244 18 111 58 599
M15 2267.4 8 55 39 163
Mil6 927.5 2 22 32 87
M17 569 2 47 29 24
Mi18 84 1 39 27 22
M19 2001 1 25 24 53
M20 1239.8 4 42 22 81
M21 1305.5 2 52 21 76
M22 7584.7 3 63 21 136
M23 682 1 23 20 49
M24 2392.5 8 40 20 134
M25 1615.7 3 26 19 83
M26 798 3 31 18 59
M27 743.7 6 43 4 719
M28 748.5 2 42 4 177
M29 142 1 35 3 45
M30 84 2 65 2 8
M31 373.5 4 25 2 70

[Geo. Mean | 967.1 [48 [408][503 [1078]

that compute-heavy features need not be re-evaluated every
time they are requested. Our dependency map API plugs into
a feature store to identify feature re-usability and decrease
the storage requirements even more. For example, it is very
common for multiple graphs to share a number of data sources.
This happens when different models re-use the same set of
features. The dependency map API automatically populates the
feature store meta-information so that data source duplication
is explicitly taken into account in the design of the feature
store persistence model.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate our implementation of our data
source dependency mapping framework.

a) Experimental Setup: We perform our evaluation based
on 31 real-world ML models that are leveraged by downstream
stakeholder teams which rely on the output of these models
to make more informed business decisions. 20% of models
require an inter-graph analysis. Our experimental evaluation
aims to investigate the latency of our system and the number of
dependencies computed for various model characteristics. All
experiments were performed on an Azure Machine Learning
workspace with 26 GB RAM running the Ubuntu 22.04.1 LTS
operating system.

b) Experimental Results: We present our experiments in
Table I. Column Avg. Act Size measures the average size of
each activity by number of tokens in the activity code. No.Act
is the number of activities in the activity graphs, No.Dep is the

number of dependencies (i.e., edges) in the activity graphs, |(]
is the number of (transitive and initial) data sources found to
map to the model, T is the execution time (ms) to compute (.
We summarize each column by providing the geometric mean.

Our experimental results show that all of our dependency
mappings can be built in in under a second with a max.
986 ms and with a geo. mean of 107.8 ms. This conforms
to execution times for similar static analyses on Python data
science scripts [10], [9], [11]. We also observe that the size
of the activities, the number of activities and the number of
dependencies all have an influence on the execution time,
while the size of (doesn’t appear to have an influence.
This conforms with our expectations as we statically analyse
activity graphs and thus are unaffected by number of initial
data sources. Overall, our system is able to compute mappings
after each pull request is merged so that dependencies are
continuously kept up-to-date with respect to the SLAs we
typically encounter.

VII. RELATED WORK

The management [12] and development [2] of ML systems
is a rapidly emerging research area. Amongst the body of
works in this area, our technique most resembles methods that
extract information from models using provenance/lineage.
For instance, the techniques in [13], [14], [15], [16] provides
run-time based lineage of ML pipelines. In contrast to these
systems, our system focuses on quickly mapping dependencies
between data sources and models by leveraging static analysis.
Since we do not require a fine-grain data (actual values) run-
time diagnostics provide little benefits and results in unneces-
sary burdens such as execution logging.

We are unaware of other work that performs static analysis
on activity graphs or similar structures. In terms of techniques
that leverage static analysis more broadly for ML [9], [11],
our technique has similarities with Vamsa [10]. Vamsa builds
a static provenance directed acyclic graph (DAG) from a
single Python script using a forwards/backwards propagation
on acyclic control-flow programs. Compared to Vamsa, we
analyze activity graphs which may contain various connected
code artifacts including scripts and queries. Our static analysis
also has foundational similarities with the dependency analysis
in [17], which could be used as an intermediate semantics to
prove theoretical soundness.

VIII. CONCLUSION

We have presented a dependency mapping framework for
large scale ML models that are defined by inter-connected
activity graphs. Our technique statically analyzes these activity
graphs to compute data sources that may impact their models.
We have deployed our framework within MCDS as a service
that is leveraged in a number of use cases. In the future, we
plan on expanding our coverage of ADF activities.

Acknowledgments. We thank all our colleagues at Mi-
crosoft. In particular, we thank Kiran R, Kirk Li, Swarnim
Narayan, Rituparna Praharaj and Guillaume Boué for their
valuable comments.

[1]

[2]

[5]
[6]
[7]
[8]

[9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

G. Symeonidis, E. Nerantzis, A. Kazakis, and G. A. Papakostas, “Mlops
- definitions, tools and challenges,” in 2022 IEEE 12th Annual Comput-
ing and Communication Workshop and Conference (CCWC), 2022, pp.
0453-0460.

S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Na-
gappan, B. Nushi, and T. Zimmermann, “Software engineering for
machine learning: A case study,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), 2019, pp. 291-300.

P. Cousot and R. Cousot, “Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approxima-
tion of Fixpoints,” in Proc. POPL, January 1977, pp. 238-252.

G. A. Kildall, “A unified approach to global program optimization,”
in Conference Record of the ACM Symposium on Principles of Pro-
gramming Languages, Boston, Massachusetts, USA, October 1973, P. C.
Fischer and J. D. Ullman, Eds. ACM Press, 1973, pp. 194-206.

P. Cousot, Principles of Abstract Interpretation. MIT Press, 2021. [On-
line]. Available: https://books.google.rs/books?id=Cwk_EAAAQBAJ
U. Khedker, A. Sanyal, and B. Sathe, Data Flow Analysis: Theory and
Practice. CRC Press, 2017.

P. Subotié, “Scalable logic defined static analysis,” Ph.D. dissertation,
University College London, 2018.

K. D. Cooper, M. W. Hall, and K. Kennedy, “Procedure cloning,” Pro-
ceedings of the 1992 International Conference on Computer Languages,
pp. 96-105, 1992.

P. Subotic, L. Milikic, and M. Stojic, “A static analysis framework for
data science notebooks,” in 44th IEEE/ACM International Conference
on Software Engineering: Software Engineering in Practice, ICSE
(SEIP) 2022, Pittsburgh, PA, USA, May 22-24, 2022. IEEE,
2022, pp. 13-22. [Online]. Available: https://doi.org/10.1109/ICSE-
SEIP55303.2022.9794067

M. H. Namaki, A. Floratou, F. Psallidas, S. Krishnan, A. Agrawal,
Y. Wu, Y. Zhu, and M. Weimer, “Vamsa: Automated provenance tracking
in data science scripts,” in Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 1542-1551.

P. Subotic, U. Bojanic, and M. Stojic, “Statically detecting data leakages
in data science code,” in SOAP ’22: 11th ACM SIGPLAN International
Workshop on the State Of the Art in Program Analysis, San Diego, CA,
USA, 14 June 2022, L. Gonnord and L. Titolo, Eds. ACM, 2022, pp.
16-22. [Online]. Available: https://doi.org/10.1145/3520313.3534657
S. Schelter, F. Biessmann, T. Januschowski, D. Salinas, S. Seufert, and
G. Szarvas, “On challenges in machine learning model management,”
IEEE Data Eng. Bull., vol. 41, pp. 5-15, 2018.

S. Grafberger, S. Guha, J. Stoyanovich, and S. Schelter, “Mlinspect:
A data distribution debugger for machine learning pipelines,” in Pro-
ceedings of the 2021 International Conference on Management of Data,
ser. SIGMOD °21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 2736-2739.

X. Xu, C. Wang, Z. Wang, Q. Lu, and L. Zhu, “Dependency tracking for
risk mitigation in machine learning (ml) systems,” in 2022 IEEE/ACM
44th International Conference on Software Engineering: Software En-
gineering in Practice (ICSE-SEIP), 2022, pp. 145-146.

M. Vartak, J. M. F. da Trindade, S. Madden, and M. Zaharia, “Mistique:
A system to store and query model intermediates for model diagnosis,”
in Proceedings of the 2018 International Conference on Management
of Data, ser. SIGMOD ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 1285-1300. [Online]. Available:
https://doi.org/10.1145/3183713.3196934

M. Vartak, H. Subramanyam, W. Lee, S. Viswanathan, S. Husnoo,
S. Madden, and M. Zaharia, “Modeldb: a system for machine
learning model management,” in Proceedings of the Workshop on
Human-In-the-Loop Data Analytics, HILDA@SIGMOD 2016, San
Francisco, CA, USA, June 26 - July 01, 2016, C. Binnig, A. D.
Fekete, and A. Nandi, Eds. ACM, 2016, p. 14. [Online]. Available:
https://doi.org/10.1145/2939502.2939516

F. Drobnjakovi¢, P. Suboti¢, and C. Urban, “Abstract interpretation-based
data leakage static analysis,” 2022.

