
Static Analysis by Elimination

Pavle Subotic1, Andrew E. Santosa2, and
Bernhard Scholz3

1 Uppsala University, Sweden
2 Oracle Labs, Australia

3 University of Sydney, Australia

Abstract. In the past, elimination-based data flow analysis algorithms have been
proposed as an alternative to iterative algorithms for solving dataflow problems.
Elimination-based algorithms exhibit a better worst-case runtime performance
than iterative algorithms. However, the implementation of elimination-based al-
gorithms is more challenging and iterative algorithms have been sufficient for
solving standard data-flow problems in compilers. For more generic abstract in-
terpretation frameworks, it has not been explored whether elimination-based al-
gorithms are useful. In this paper we show that elimination-based algorithms
are useful for implementing abstract interpretation frameworks for low-level pro-
gramming languages. We demonstrate the feasibility of our approach by a range
analysis developed in the LLVM framework. We supplement this work by a range
of experiments conducted through several test suites.

1 Introduction

Range analysis has various applications in embedded systems program analysis in-
cluding assertion elimination [1], determining the numerical stability of algorithms [6],
eliminating array out of bound checks [7], and integer overflow detection [15]. The ma-
jority of embedded systems are written in low-level languages such as assembly or C.
Implementing a range analysis for low-level languages, is not entirely straightforward in
the presence of loops as they are often implemented using goto-like statements. In such
cases the static program analysis framework must identify potential program points
that may delay the termination of the analysis. Existing methods [4, 6, 2] rely either
on structured control-flow imposed by the syntax of a programming language to iden-
tify loops, or require additional and complicated control flow analysis to mark program
loop headers [11]. In this paper we present a range analysis for the LLVM [10] low-level
language which uses an elimination-based data-flow analysis [14]. We demonstrate our
technique through an implementation in the industrial strength LLVM compiler frame-
work. We have also conducted experiments with a suite of test programs. Our approach
demonstrates that elimination-based data flow algorithms are (1) useful in implement-
ing generic abstract interpretation frameworks, (2) provide a more precise and flexible
alternative to iterative schemes, and (3) integrates into compilers with ease as shown
with the LLVM compiler framework. The contributions of this paper are as follows: (1)
adopting an elimination-based algorithm for an abstract interpretation framework – in
particular range analysis, (2) intrinsically discovering widening points and accelerating

convergence, and (3) implementing our techniques in the LLVM compiler framework
and demonstrating feasibility. The paper is organized as follows: In Section 2 we ex-
plain the background, in Section 3 we discuss our approach, in Section 4 we present
our results, and in Section 5 we draw our conclusions.

2 Background

Data flow analysis. Data flow analysis [9] is a unified framework for static program
analysis. It takes as input a program in the form of a control-flow graph (CFG) and
gathers information about the possible set of program values. In this work, we assume
that CFG nodes are basic blocks, i.e., a sequence of consecutive statements, and edges
represent transfer of control from one basic block to another. A basic block is assigned
a unique number i, (0≤ i≤ n−1), where n is the number of basic blocks in the graph.
The node 0 denotes the start node and all other nodes are denoted by 1 to n−1. The set
of predecessors for node i is denoted by pred(i). We say a path p is a sequence of basic
blocks 0 . . . i . . .n−1 such that (i, i+1) is an edge in the control-flow graph. A constraint
system has the following initial form that directly corresponds to the control-flow graph:

x0 w f0({xk|k ∈ pred(0)}),
...

xn−1 w fn−1({xk|k ∈ pred(n−1)}).

The data-flow variables xi denote abstracted program properties at the entry of basic
block i, and functions f ′i s are monotonic data-flow functions whose arguments are the
data-flow variables of the predecessors of i. The symbol w denote a partial order. Sev-
eral techniques exist for obtaining a solution for a data-flow constraint system. They can
be broadly classified as either iterative [9, 8, 3] or elimination-based approaches [12,
13].

Elimination-based algorithms. Elimination-based algorithms are derivatives of the Gaus-
sian elimination approach for solving constraints. Modern approaches are more efficient
than the Gaussian algorithm because they exploit the underlying dependency structure
of the simultaneous equation system. Modern approaches include Allen-Cocke inter-
val analysis, Hecht-Ullman T1-T2 analysis, Tarjan interval analysis, Graham-Wegman
analysis, which are surveyed in [12], Scholz-Blieberger [13], and Sreedhar-Gao-Lee al-
gorithm [14]. Allen-Cocke interval analysis derives the set of interval graphs and uses
them to choose an evaluation order for the data-flow equations. This results in a CFG
that leads to simplification. It has a worst-case run-time complexity of O(n2) compared
to O(n3) for the Gaussian elimination approach, where n is the number of nodes in
the graph. Hecht-Ullman T1-T2 analysis non-deterministically substitutes terms in the
equations with respect to an ordering. The substitutions are stored and possible com-
mon factors are exploited in subsequent calculations. This approach improves on the
Allen-Cocke algorithm by having a worst-case complexity of O(n logn). Tarjan inter-
val analysis imposes linear variable ordering and eliminates variables from the system
of equations in that ordering, delaying some calculations; a path-compressed tree is

used to remember sequences of reduced equations for these delayed calculations. It has
an improved worst-case complexity in O(nα(n)) where α is a very slow growing func-
tion. Graham-Wegman analysis establishes an order of substitutions for each term in the
system that avoids duplication of common substitution sequence calculations. It uses a
transformed version of the original graph to remember previous substitutions. It has a
worst-case complexity of O(n logn). The Scholz-Blieberger algorithm [13] uses anno-
tated decomposition trees which describes reducible flowgraphs with means of binary
trees. However, their algorithm is limited to reducible flowgraphs.

In this work, we employ the Sreedhar-Gao-Lee algorithm that makes the implemen-
tation of elimination algorithms simpler by using a data structure called DJ-graphs [14].
The DJ-graph of a program is the dominator tree of its control-flow graph, we refer to
these edges as D-edges. This graph is augmented with join edges called J-edges. In the
first phase of the algorithm, J-edges are eliminated in a bottom-up manner, and using a
loop breaking rule cyclic J-edges are instantiated. The algorithm also performs substi-
tution along D-edges when necessary. At the end of the bottom-up elimination phase,
all the J-edges will be eliminated. Once the solution is determined for the root node,
this information is propagated in a top-down fashion on the dominator tree to compute
the solution for every other node. It has a complexity in O(m logn) where m is the num-
ber of edges and n is the number of nodes in the flow graph. The Sreedhar-Gao-Lee’s
algorithm has another advantage that it is readily implementable and is therefore em-
ployed in our experiments in Section 4. Our approach is however, equally applicable
to other algorithms. An elimination-based data-flow solver requires two operations that
are applied to the set of constraints, i.e., substitution (subi, j) and loop-breaking (lbi).
Substitution is defined as a transformation of the set of constraints, where an occur-
rence of a data-flow variable xi, in the right-hand side of constraint x j, is replaced by its
associated term. Loop-breaking eliminates the occurrences of variable xi on the right-
hand side of constraint i. Substitution and loop-breaking is applied until a solution for a
single variable is found and this solution is back-propagated to determine the solutions
of the remaining variables.

To illustrate the elimination-based approach we present an example which consists
of three constraints, i.e., n = 3, and where we assume a Boolean domain, i.e., vari-
ables can assume values in the Boolean lattice. The following constraint system is con-
structed, which corresponds to a control-flow graph which has a loop between nodes 1
and 2 denoted by the data-flow variables x1 and x2:

x0 w false, x1 w x0∧ x2, x2 w x1.

By following the Gaussian algorithm, the operation lb0(cs) is performed in the first
loop. This operation has no effect since the constraint x0 w false has no recurrence of
x0 on the right-hand side. Within the inner loop, the operations sub0,1(cs), sub0,2(cs) are
performed, resulting in the following constraint system:

x0 w false, x1 w false∧ x2, x2 w x1.

In the second iteration of the outer loop lb1(cs) is performed, which has no effect.
However, performing sub1,2(cs) in the inner loop, produces the following constraint

system:

x0 w false, x1 w false∧ x2, x2 w false∧ x2.

In the last iteration of the outer loop, lb2(cs) is performed. The loop-breaking operation
finds a fixpoint solution for x2, which in this case has the fixpoint solution x2 = false.
For this iteration the inner loop is not executed and the program exits the outer loop. At
this point we have the following constraint system:

x0 w false, x1 w false∧ x2, x2 w false.

We execute the second loop, which executed the operations, sub2,1(cs), sub2,0(cs), and
sub1,0(cs). After these operations are executed, we have the following constraint system:

x0 w false, x1 w false∧false, x2 w false.

The constraint system now has no variables left and can be solved, giving us the result
of:

x0 w false, x1 w false, x2 w false.

Widening and narrowing. We let the widening (∇) and narrowing (∆) operators be de-
fined as in [5] and extend them to environments. Let σ1 and σ2 be environments on
the same variable domain, σ1∇σ2 = σ3 such that if σ1(x) = [l1,u1] and σ2(x) = [l2,u2],
then σ3(x) = ([l1,u1]∇[l2,u2]) for all variables x. Similarly, σ1∆σ2 = σ4 such that if
σ1(x) = [l1,u1] and σ2(x) = [l2,u2], then σ4(x) = ([l1,u1]∆[l2,u2]) for all variables
x. We define a widening and narrowing iteration, denoted widen narrow iter, on en-
vironments. This definition is defined in terms of a widening iteration, denoted as
widen iter(f) and defined as follows:

Definition 1. (Widening Iteration) Given a monotonic function f that is a denotation
of a program, we say that widen iter(f) is the environment σn, where n is the least
natural number such that σn+1 = σn, and where σi is inductively defined as σ0(x) =⊥
for all variable x, and σi+1 = σi∇ f (σi).

We note that widen iter(f) is a post fixpoint that is obtained after finitely many steps.
In the definitions the data-flow functions are representations of the abstract semantic
transformation functions. The widen narrow iter(f) is defined as follows:

Definition 2. (Narrowing/Widening Iteration) Given a monotonic function f that is a
denotation of a program, we say that widen narrow iter(f) is an environment σn where
n is the smallest natural number such that σn+1 = σn, and where σi is defined as:
σ0 = widen iter(f), and σi+1 = σi∆ f (σi).

3 Approach

Our approach uses elimination-based data-flow analysis and embeds widening and nar-
rowing inside its algebraic loop-breaking operation. The elimination-based approach
automatically discovers program loops in the CFG, regardless of the control-flow graph
topology. In this section we formally define our proposed framework and illustrate it by
an example.

i = 1;
if(i < 1) goto B1;

else goto B2;

B0

i =i + 1;
goto B2;

B1

i =i + 1;
goto B1;

B2

Fig. 1. An Irreducible CFG of a Diverging Program

3.1 Preliminaries

We define a set X = {x0, . . . ,xn} of data-flow variables, where n is the number of basic
blocks in the program. We also define a set of function symbols F which contains a
special symbol F∗. A constraint is of the form x w e, where x ∈ X and e is an element
of set T ⊆ (X ∪F)∗ such that for all t ∈ T either t ∈ X and or t = f (t1, . . . , tn) such
that f ∈ F and t1, . . . , tn ∈ T. Now, e = f (t1, . . . , tm) such that f ∈ F and t1, . . . , tk ∈ T.
Further, we say a constraint system for simply a set of constraints.

Elimination Phase. The elimination-based framework’s operations transform the con-
straint system. There are two kinds of transformations that are defined on a constraint
system: substitution and loop breaking.

Definition 3. (Substitution Operation) Given (xi w ei) ∈ cs, and for all j such that
(x j w e j) ∈ cs,subi, j(cs) = {xi w ei[e j/x j]|i6= j}∪{xi w ei|i = j}∪{xk w ek|k 6= i,(xk w
ek) ∈ cs}. Now, syssubi(cs) = (subn,i(cs) · . . . · sub0,i)(cs).

Intuitively, in the substitution operation subi, j(cs), i is an index to a constraint q in cs
that will be acted upon, and j is an index to a constraint in cs that will be substituted
into q. In syssubi(cs), i is an index to a constraint in cs that will be substituted into all
other constraints in cs. We next define the loop breaking operation.

Definition 4. (Loop-Breaking Operation) Let (xi w ei) ∈ cs, and
lbi(cs) = {xi w F∗(ei,x′i)|xi ∈ var(ei)}∪{xi w ei|xi 6∈ var(ei)}∪{xk w ek|k 6= i}.

Given a constraint xi w ei of cs with xi ∈ var(ei), the loop-breaking operation lbi(cs)
wraps a binary function F∗ around ei. The resulting expression F∗(ei,x′i) denotes an
environment σ, such that σ = ei[σ/xi]. We note here that σ need not be the least (wrt.
w extended to environments) of such solution. As we later see, F∗ is implemented
as a sequence of widening and narrowing. By repeatedly applying these operations,
following some algorithm, the constraint system is rewritten to its normal form, i.e., a
system of constraint that cannot be further reduced.

We describe through an example how our proposed framework performs a range
analysis using an example in Figure 1 of an irreducible graph, that may occur in in-
termediate representations. The example initializes the value i to one and enters the
B2 block, as the condition to B1 is invalid. The block B2 increments i by one and

Block 1st Iter. 2nd Iter. (Widen) 3rd Iter. (Narrow)

x2 ⊥ [2,2] [2,∞]
f0 [1, 1] [1, 1] [1, 1]

A : f1 ⊥ [3, 3] [3, ∞]
f2 [2, 2] [2, 4] [2, ∞]
x′2 [2, 2] [2, 2]∇[2, 4]=[2, ∞] [2, ∞]∆[2, ∞]=[2, ∞]

Fig. 2. Solving an Irreducible CFG of a Diverging Program

unconditionally branches to B1. The block B1, also increments i by one and uncondi-
tionally branches back to B2 and this process continues. The corresponding data-flow
constraint system of the example in Figure 1 contains x0 w f0(⊥), x1 w f1(x0,x2), and
x2 w f2(x0,x1). To solve this constraint system, we must eliminate all variables so that
the constraint system is in a normal form. We note that the functions are defined by an
appropriate abstract semantics function S∗]J·K as follows:

f0(⊥) = S∗]Ji=1K{i 7→ ⊥}= {i 7→ [1,1]},
f1(x0,x2) = S∗]Ji=i+1K(x0tx2),

f2(x0,x1) = S∗]Ji=i+1K(x0tx1).

The elimination framework will perform a sequence of transformations, with the subi, j
and lbi operations. Ultimately, any cyclic graph will result in a loop-breaking operation
being called, regardless of the reducibility of the graph. In this example we follow the
general elimination algorithm of [12].

A series of algebraic operations are performed to reduce the system of constraints
to a normal form. In the first transformation, x0 is substituted for all its occurrences
in the constraint system. This is followed by substituting x1 for all of its occurrences.
Next, we find a recursive definition in the definition of x2. We perform a loop break-
ing operation which wraps the right-hand side of x2 with a F∗ operations. Finally, we
backward propagate the definition of x2 to x2’s predecessors (i.e., constraints x1 and
x0) and obtain a normal form. The algorithm when implemented using DJ-graphs has a
asymptotic complexity of O(m logn) as shown in [14]. The naive implementation that
follows the Gaussian elimination-like pattern has cubic complexity.

Solving Phase. Once the constraint solution is normalized, it can be solved to determine
the variable ranges at each program point. When resolving a recurrence with the F∗

function, i.e. for the function F∗(fi(. . .xi . . .),x′i), we say that x′i is the fixpoint value
that shall replace xi. The next step is to find its value. For this we implement F∗ as
F∗(e) = narrow widen iter(e),, where narrow widen iter is as given by Definition 2.
We present an example of solving one constraint from the system of constraints. In
Figure 2 we distinguish the two instances of f1 using the letters A and B. Our algorithm
performs widening and narrowing on the interval values for x′2 at each traversal of the
tree. In that sense the constraint system is solved in a bottom-up manner. Before each
iteration, x2 is assigned the value of x′2 (initially ⊥). Note that since we always discuss

the value of the variable i, we simply write x j whenever we mean x j(i) for any j. It
also is important to note that there is a condition i<1 on the edge (f0, f1) and another
condition i>=1 on the edge (f0, f2) obtained from the control-flow graph of the original
program. The conditions restrict the interval values obtained via the edges. The first
iteration starts with x2 having the value of ⊥, and f0 has the constant value of [1,1].
The condition on the edge (f0,A : f1) restricts the value of i to ⊥ and since the initial
value of x2 is ⊥, A : f 1 (which is an increment operation) propagates the value ⊥ to f2.
This is merged with the constant value [1,1] of f1 resulting in [1,1] which is incremented
by f2 to [2,2], which then becomes the next value for x′2. In the next iteration, we assign
this value to x2. In a similar process, we obtain the interval [2,4] from f2. Here we
apply the widening operator on [2,2] and [2,4] resulting in the interval value [2,∞],
which is stable. The next iteration tries to improve on the fixpoint value of [2,∞] via
narrowing. This, however, for this program, is not possible and we reach a fixpoint. We
can conclude that the value of i may diverge. By inspecting the program in Figure 1 and
the program analysis results in Figure 2 it is easy to see that these results are accurate.
The variable i is incremented twice as both functions f1 and f2 increment i, and it causes
a divergent value resulting from the infinite loop. Although this example considers the
case of a single loop, our approach can naturally be applied to more complex control-
flow graphs.

Term-Size Limits. In some constraint systems the structural depth of right-hand side
terms may increase rapidly as a result of substitutions. To mitigate this problem we
limit the term sizes. After a substitution or loop-breaking we determine the structural
size (i.e. number of atomic sub-terms) of the right-hand side of a constraint. If the total
size is larger than a threshold K, we replace the term with an interval that is an over-
approximation of its value. There are various methods to over-approximate terms. One
approach is to replace the entire term with [−∞,∞] and hope to recover some bounds
through future narrowing.

4 Experiments

In this section we summarize the results of our program analysis tool. In particular
we highlight the execution-time/precision trade-off with various term-size limits. In
Table 1 we present our results of the bounds of variables in looped LLVM programs
from our test suite. The characteristics of these test programs are summarized in left
most columns. Programs T6-T8 produce terms with a large structural size and we show
how precision and execution-times vary as the threshold value of K is changed. For
programs T0-T5, we found that limiting the value of K made no major improvements in
execution-time. We present the types of variable bounds observed in each test program.
Exact results, have the form [l,u] where l = u. Bounded intervals are of the form [l,u]
where l < u. This type of result indicates that no widening occurred or the widened
bounds were recovered by narrowing. Fully widened intervals have the form (−∞,∞),
where both directions are widened. Partially widened intervals are of the form [l,∞)
or (−∞,u], indicating widening occurred in a single direction or a widened bound was
recovered by narrowing. Note that in programs where a variable diverges this is often a

Test K Exact Bounded Part Full Time LOC Max Loops
(%) (%) (%) (%) (Sec) (LLVM) Nest

T0 − 15 55 30 0 0.016 48 3 2
T1 − 20 30 50 0 0.013 30 2 1
T2 − 8 3 2 0 0.024 53 3 2
T3 − 100 0 0 0 0.048 44 3 0
T4 − 5 95 0 0 0.039 28 2 1
T5 − 25 70 0 0 0.066 45 3 3
T6 25 6 94 0 0 1.441 88 3 2

10 6 24 0 70 0.839
T7 30 80 20 0 0 1.979 130 2 1

10 35 2 0 63 1.469
T8 30 79 20 1 0 5.385 144 3 7

10 60 10 1 29 3.779
Table 1. Variable Bounds Per Test Case

legitimate result, e.g., unbounded loops. In Table 1 our program analysis attains mainly
bounded intervals. The next common results are exact and partially widened values.
The two cases of full widening occur in programs where variables assume values from
an external function call and are not constrained by any conditional control-flow. As
previously explained, certain programs can produce constraint systems where the right-
hand side of a constraint has a large structural depth. Programs T6-T8 have this property.
In the experiments in Table 1 we find that K = 20 is a good trade-off between precision
and execution-time.

5 Conclusion

We have presented an elimination-based static analysis framework for range analysis
of program variables values in low-level languages. We have shown that it is possible
to extend elimination-based data-flow analysis algorithms to incorporate analyses with
highly bound information lattices. We demonstrated the effectiveness of our frame-
work by an implementation as an LLVM compiler pass. Our technique extends the
elimination-based data-flow analysis approach by combining it with abstract interpre-
tation and introducing the term limits. We have shown this approach performs fast and
precise static program analysis on low-level code. Some prospective future work is to
improve the limit-size technique to obtain better a execution-time / precision trade-off.
Additionally, it would be interesting to embedded other acceleration techniques in the
framework by refining the semantics of the loop-breaking operation.

References
1. J. Berdine, C. Calcagno, and P. W . O’Hearn. Smallfoot: Modular automatic assertion check-

ing with separation logic. In 4th FMCO, volume 4111 of LNCS, pages 115–137. Springer,
2005.

2. F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In Formal Methods in
Programming and Their Applications, volume 735 of LNCS, pages 128–141. Springer, 1993.

3. Michael Burke. An interval-based approach to exhaustive and incremental interprocedural
data-flow analysis. ACM TOPLAS, 12:341–395, July 1990.

4. B. Le Charlier and P. Van Hentenryck. A universal top-down fixpoint algorithm. Technical
Report CS-92-25, Brown University, 1992.

5. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In 4th POPL, pages 238–252.
ACM, 1977.

6. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. Combi-
nation of abstractions in the ASTREÉ static analyzer. In 11th ASIAN, LNCS, pages 272–300.
Springer, 2006.

7. N. Dor, M. Rodeh, and M. Sagiv. CSSV: Towards a realistic tool for statically detecting all
buffer overflows in C. In PLDI ’03, pages 155–167. ACM, 2003.

8. J. B. Kam and J. D. Ullman. Global data flow analysis and iterative algorithms. J. ACM,
23:158–171, January 1976.

9. G. A. Kildall. A unified approach to global program optimization. In 1st POPL, pages
194–206. ACM, 1973.

10. C. Lattner and V. Adve. The LLVM instruction set and compilation strategy, 2002.
11. G. Ramalingam. Identifying loops in almost linear time. ACM TOPLAS, 21(2):175–188,

1999.
12. B. G. Ryder and M. C. Paull. Elimination algorithms for data flow analysis. ACM C. Surv.,

18:277–316, September 1986.
13. B. Scholz and J. Blieberger. A new elimination-based data flow analysis framework using

annotated decomposition trees. In ETAPS ’07, LNCS. Springer, 2007.
14. V. C. Sreedhar. Efficient program analysis using DJ graphs. PhD thesis, McGill University,

Montreal, Canada, 1995.
15. T. Wang, T. Wei, Z. Lin, and W. Zou. IntScope: Automatically detecting integer overflow

vulnerability in x86 binary using symbolic execution. In NDSS ’09, 2009.

A Correctness Proof

Theorem 1. (Correctness) If cs i cs′ for some i, and F∗(e,v) = narrow widen iter(e)
then SOL(cs′)w SOL(cs).

Here we prove the correctness of our approach, that is, Theorem 1. We can intu-
itively understand correctness as:

1. Maintaining the invariant that every constraint transformation is also in the solution
space.

2. Narrowing and widening results in a solution, that is, implementing F∗ using nar-
row widen iter in such a way that F∗(e,v) = narrow widen iter(e) results in a
solution.

We first prove that the substitution operation of the elimination framework is correct.

Lemma 1. (Substitution Correctness) SOL(subi, j(cs))w SOL(cs).

Proof. In case i = j, subi, j(cs) = cs (see Definition 3) and therefore trivially
SOL(subi, j(cs)) w SOL(cs). In case i 6= j, let us assume a solution ψ ∈ SOL(cs) such
that given (xiw ei)∈ cs where ei = gi(x0, . . . ,xn), we have that ψ(xi)w gi(

⊔
{ψ(xk) | k∈

pred(i)}) due to commutativity of t. Here we assume that several transformations have
been performed from the initial set of constraints, resulting in gi, which is some some
composition of fks and F∗. From the properties of these operators, gi is monotonic.
Now, due to commutativity of t,

ψ(xi)w gi(
⊔
{ψ(xk) | k ∈ pred(i)−{ j}}tψ(x j)). (1)

Since ψ ∈ SOL(cs), it should be the case that ψ(x j)w g j(
⊔
{ψ(xk) | k ∈ pred(j)}) for

any j ∈ pred(i), and therefore the following holds:⊔
{ψ(xk) | k ∈ pred(i)−{ j}}tψ(x j)

w⊔
{ψ(xk) | k ∈ pred(i)−{ j}}t
g j(

⊔
{ψ(xk) | k ∈ pred(j)}).

Now due to monotonicity of gi,

gi(
⊔
{ψ(xk) | k ∈ pred(i)−{ j}}tψ(x j))

w
gi(

⊔
{ψ(xk) | k ∈ pred(i)−{ j}}t

g j(
⊔
{ψ(xk) | k ∈ pred(j)})).

The right-hand side of the above reflects the effect of subi, j. Using this and (1), we have:

ψ(xi)w
gi(

⊔
{ψ(xk) | k ∈ pred(i)−{ j}}t

g j(
⊔
{ψ(xk) | k ∈ pred(j)})).

ψ is therefore also a solution of SOL(subi, j(cs)).

We also establish that the loop breaking maintains a solution.

Lemma 2. (Loop Breaking Correctness) SOL(lbi(cs)) w SOL(cs) when F∗(e,v) =
narrow widen iter(e).

Proof. Since narrow widen iter is a sequence of widening until fixpoint is reached
followed by narrowing until fixpoint is reached, we can rely on the classical result of
[5].

Following is Theorem 1 re-stated here.

Theorem 2. (Correctness) If cs i cs′ for some i, and F∗(e,v) = narrow widen iter(e)
then SOL(cs′)w SOL(cs).

Proof. Immediate from the fact that cs i cs′ is either a composition of subk,i for all k,
or lbi given that F∗(e,v) = narrow widen iter(e), and from Lemmas 1 and 2.

